Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇金佳(Chin-Chia Su)
dc.contributor.authorChen-Yu Chenen
dc.contributor.author陳振宇zh_TW
dc.date.accessioned2021-06-13T01:39:59Z-
dc.date.available2007-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-13
dc.identifier.citation1. 李秋煌, 黃瓊輝, 林萃, “燃料重組器系統概論”, 石油季刊, 第39卷, 第4期, 45-62。(2003)
2. A. Y. Tonkovich, J. L. Zilka, M. J. LaMont, Y. Wang, R. S. Wegeng, “Microchannel reactors for fuel processing applications. I. Water gas shift reactor”, Chemical Engineering Science, 54, 2947-2951.(1999)
3. G. Xu, Z. G. Zhang, “Preferential CO oxidation on Ru/Al2O3 catalysis: An investigation by considering the simultaneously involved methanation”, Journal of Power Sources, 157, 64-77.(2006)
4. 周中洋, “燃料電池重組器性能分析與觸媒影響之研究”, 國立台灣大學機械工程研究所碩士論文。(2005)
5. 陳彥伊, “燃料電池重組器觸媒對反應後氣體CO濃度的影響”, 國立台灣大學機械工程研究所碩士論文。(2006)
6. C. Horny, L. Kiwi-Minsker, A. Renken, “Micro-structured string-reactor for autothermal production of hydrogen”, Chemical Engineering Journal, 101, 3-9.(2004)
7. D. J. Seo, W. L. Yoon, Y. G. Yoon, S. H. Park, G. G. Park, C. S. Kim, “Development of a micro fuel processor for PEMFCs”, Electrochimica Acta, 50, 719-723.(2004)
8. G. G. Park, D. J. Seo, S. H. Park, Y. G. Yoon, C. S. Kim, W. L. Yoon, “Development of microchannel methanol steam reformer”, Chemical Engineering Journal, 101, 87-92.(2004)
9. C. Horny, L. Kiwi-Minsker, A. Renken, “Micro-structured string-reactor for autothermal production of hydrogen”, Chemical Engineering Journal, 101, 3-9.(2004)
10. J. D. Holladay, E. O. Jones, M. Phelps, J. Hu, “Microfuel processor for use in a miniature power supply”, Journal of Power Sources, 108, 21-27.(2002)
11. B. Lindstrom and L. J. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications”, Journal of Power Source, 118, 71-78.(2003)
12. J. W. Park, J. H. Jeong, W. L. Yoon, Y. W. Rhee, “Selective oxidation of carbon monoxide in hydrogen-rich stream over Cu-Ce/γ-Al2O3 catalysts promoted with cobalt in a fuel processor for proton exchange membrane fuel cells”, Journal of Power Source, 132, 18-28.(2004)
13. 房德仁, 張慧敏, “富氫條件下CO脫除催化技術進展”, http://www.hxtb.org, 化學通報, 第66卷。(2003)
14. M. J. Kahlich, H. A. Gasteiger, R. J. Behm, “Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3”, Journal of Catalysis, 171, 93-105.(1997)
15. O. Korotkikh, R. Farrauto, “Selective catalytic oxidation of CO in H2:fuel cell applications ”, Catalysis Today, 62, 249-254.(2000)
16. Se H. Oh, R. M. Sinkevitch, “Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation”, Journal of Catalysis, 142, 254-262.(1993)
17. I. H. Son, A. M. Lane, D.T. Johnson, “The study of the deactivation of water-pretreated Pt/γ-Al2O3 for low-temperature selective CO oxidation in hydrogen”, Journal of Power Sources, 124, 415-419.(2003)
18. G. Xu, Z. G. Zhang, “Preferential CO oxidation on Ru/γ-Al2O3 catalyst: An investigation by considering the simultaneously involved methanation”, Journal of Power Sources.(2005)
19. Y. F. Han, M. Kinne, R. J. Behm, “Selective oxidation of CO on Ru/γ-Al2O3 in methanol reformate at low temperatures”, Applied Catalysis B: Environmental, 52, 123-134.(2004)
20. Y. F. Han, M. J. Kahlich, R. J. Behm, “CO removal from realistic methanol reformate via preferential oxidation-performance of a Rh/MgO catalyst and comparison to Ru/γ-Al2O3, and Pt/γ-Al2O3 ”, Applied Catalysis B: Environmental, 50, 209-218.(2004)
21. D. J. Suh, C. Kwak, J. H. Kim, Se M. Kwon, T. J. Park, “Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts”, Journal of Power Sources, 142, 70-74.(2005)
22. C. Kwak, T. J. Park, D. J. Suh, “Effects of sodium addition on the performance of PtCo/ catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels”, Applied Catalysis A: General, 278, 181-186.(2005)
23. C. Kwak, T. J. Park, D. J. Suh, “Preferential oxidation of carbon monoxide in hydrogen-rich gas over platinum-cobalt-alumina aerogel catalysts”, Chemical Engineering Science, 60, 1211-1217.(2005)
24. C. B. Wang, H. K. Lin, J. L. Bi, S. J. Gau, “Characterization of High Valence Cobalt Oxide and CO Adsorption/Oxidation”, Journal of C.C.I.T., Vol.33, No.1.(2004)
25. G. W. Roberts, P. Chin, X. Sun, J. J. Spivey, “Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction”, Applied Catalysis B: Environmental, 46, 601-611.(2003)
26. A. Sirijaruphan, J. G. Goodwin, Jr., R. W. Rice,“Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO”, Journal of Catalysis, 224, 304-313.(2004)
27. M. Kotobuki, A. Watanabe, H. Uchida, H. Yamashita, M. Watanabe, “Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe and Pt-Fe/mordenite catalysts”, Journal of Catalysis, 236, 262-269.(2005)
28. A. Manasilp, E. Gulari, “Selective CO oxidation over Pt/alumina catalysts for fuel cell applications”, Applied Catalysis, 37, 17-25.(2002)
29. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catalysis Today, 75, 157-167.(2002)
30. P.V. Snytnikov, V.A. Sobyanin, V.D. Belyaev, P.G. Tsyrulnikov, N.B. Shitova, D.A. Shlyapin, “Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts”, Applied Catalysis, 239, 149-156.(2003)
31. S. Y. Chin, O. S. Alexeev, M. D. Amiridis, “Preferential oxidation of CO under excess H2 conditions over Ru catalysts”, Applied Catalysis, 286, 157-166.(2005)
32. Y. Choi, H. G. Stenger, “Kinetics, simulation and insights for CO selective oxidation in fuel cell applications”, Journal of Power Sources, 129, 246-254.(2004)
33. J. W. Park, J. H. Jeong, W. L. Yoon, C. S. Kim, D. K. Lee, Y. K. Park, Y. W. Rhee, “Selective oxidation of CO in hydrogen-rich stream over Cu-Ce catalyst promoted with transition metals”, International Journal of Hydrogen Energy, 30, 209-220.(2005)
34. M. M. Schubert, A. Venugopal, M. J. Kahlich, V. Plzak, R. J. Behm, “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3”, Journal of Catalysis, 222, 32-40.(2004)
35. R. J. H. Grisel, B. E. Nieuwenhuys, “Selective Oxidation of CO, over Supported Au Catalysts”, Journal of Catalysis, 199, 48-59.(2001)
36. C. Y. Huang, Y. M. Sun, C. Y. Chou, C. C. Su, “Performance of catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a small reformer for hydrogen generation”, Journal of Power Sources, 166, 450-457.(2007)
37. 萬本儒, 黃慶村, 郭建男, 李財興, “富氫氣體中一氧化碳抑低方法研究”, 行政院原子能委員會核能研究所委託研究計畫研究報告。(2005)
38. Y. Hasegawa, A. Ueda, K. kusakabe, S. Morooka, “Oxidation of CO in hydrogen-rich gas using a novel membrane combined with a microporous SiO2 layer and a metal-loaded γ-Al2O3 layer”, Applied Catalysis, 225, 109-115.(2002)
39. Y. Jing, M. J. Xin, Z. Wei, “Effect of Cobalt in Modifying Pt/γ-Al2O3 catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream ”, ACTA CHIMICA SINICA, 62, No.21, 2143-2149.(2004)
40. F. Fischer, H. Tropsch , P. Dilthey, Brennstoff-Chemie, 6, 265.(1925)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30155-
dc.description.abstract燃料電池為使用氫氣及氧氣為燃料,反應後產生電及水,能降低空氣污染以及二氧化碳排放,改善目前全球生態環境,是故能應用在各種方面的燃料電池技術,開始被大量研究。
甲醇重組器可將甲醇水溶液轉化為氫氣、一氧化碳及二氧化碳。優先氧化法則可把產出氣體中的一氧化碳濃度降低至10ppm以下,解決PEMFC白金電極毒化的問題,以提供PEMFC使用。有鑑於實際重組器的運作中會有少許的水參與PROX反應,因此,本研究加入水參與PROX反應,探討水對於PROX反應中CO濃度的影響,以及對RROX反應中甲烷化的抑制效果,以期能完整呈現甲醇重組系統於實際運作過程中的表現。
實驗結果顯示,水對於觸媒的CO轉化率有所幫助,特別是5%Pt觸媒,可使CO轉化率提升,並減少CO的濃度。而加入水參與反應後,更可降低各種觸媒於高溫時產生的甲烷化現象,尤其以Ru系列觸媒最為明顯,可在220℃時,將甲烷產量降至1414ppm左右,相較於無水PROX反應,降低極多,因此減少氫氣損失,進而提升系統效率。
zh_TW
dc.description.abstractFuel cell converts the chemical energy within the fossil fuel directly to electrical energy without combustion. Based on this theory, fuel cell has the advantage to reduce the air pollution and slow down the global warming. Therefore, fuel cell has drawn the most attention recently.
Through the reforming process, methanol could be converted into hydrogen-rich gas for fuel cell. The Preferential Oxidation(PROX) can reduce CO in hydrogen-rich gas to a tolerant level. Consequently, it can stop poisoning the platinum anode electrode of fuel cell. Also, the water is added into system because in reality, water will participate in PROX reaction. So, the influence of water on the PROX reaction will need further investigation.
The experimental results shown that the existence of water in reaction do help the CO conversion, especially in 5%Pt catalyst. Existence of water also reduces the methanation phenomenon of all catalysts in experiment at high temperature, especially in series of Ru catalysts. At reacting temperature 220℃ and water flow rate of 1 ml/min, 1%Ru catalyst can reduce the methane concentration to 1414ppm. Therefore, water can decrease the loss of hydrogen and improve the efficiency of whole system.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:39:59Z (GMT). No. of bitstreams: 1
ntu-96-R94522121-1.pdf: 3270368 bytes, checksum: a31831f46e0b44020dab039cd0ae4aa2 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要........................................................................................................I
英文摘要.....................................................................................................II
目錄............................................................................................................III
表目錄........................................................................................................VII
圖目錄......................................................................................................VIII
符號說明.....................................................................................................XI
第一章 緒論...............................................................................................1
1.1 燃料電池重組器..........................................................................1
1.2 重組後氣體的純化......................................................................2
1.2.1 分離膜純化..............................................................................2
1.2.2 水氣轉移法..............................................................................2
1.2.3 優先氧化法..............................................................................3
1.3 研究動機......................................................................................4
第二章 文獻回顧.......................................................................................5
2.1 甲醇重組........................................................................................5
2.1.1 部分氧化重組法.......................................................................5
2.1.2 蒸氣氧化重組法.......................................................................6
2.1.3 自發熱重組法………………………………………………...7
2.2 優先氧化法...............................................................................8
2.2.1 白金觸媒..................................................................................8
2.2.2 釕觸媒.....................................................................................9
2.2.3 鐵和鈷添加物…………….………………..........…………....9
2.3 水對優先氧化法之影響.............................................................10
第三章 實驗設備與程序..........................................................................12
3.1 甲醇供應系統.............................................................................12
3.1.1 甲醇水槽................................................................................12
3.1.2 甲醇水泵................................................................................12
3.1.3 甲醇水液體流量計..................................................................13
3.2 熱交換系統.................................................................................13
3.2.1 熱交換器................................................................................13
3.2.2 物理乾燥器............................................................................13
3.3 甲醇反應系統.............................................................................14
3.3.1 反應器...................................................................................14
3.3.2 擾流頭...................................................................................14
3.3.3 反應器中其它配件..................................................................14
3.4 優先氧化系統.............................................................................15
3.4.1 PROX反應器..........................................................................15
3.4.2 氧氣流量計............................................................................15
3.4.3 水泵......................................................................................15
3.4.4 水流量計…………………..………………………….....…15
3.4.5 蒸發裝置………………..……………………….............…16
3.5 其它裝置.....................................................................................16
3.5.1 逆止閥………………………………….................……..…16
3.5.2 管狀加熱器………………………..........………………..…16
3.5.3 隔熱裝置………………………………...........................…16
3.5.4 溫度控制器………………………………………............…17
3.5.5 熱電偶...................................................................................17
3.6 測量設備.....................................................................................17
3.6.1 質量流量計............................................................................17
3.6.2 壓力傳送器............................................................................17
3.6.3 燃燒性氣體偵測器..................................................................18
3.6.4 氣相層析儀............................................................................18
3.7 重組觸媒.....................................................................................18
3.8 PROX觸媒選擇.........................................................................19
3.9 實驗流程.....................................................................................20
第四章 結果與討論..................................................................................22
4.1 甲醇蒸氣重組氣體成分.............................................................22
4.2 λ對PROX反應的影響..................................................22
4.2.1 白金(Pt)觸媒.......................................................................23
4.2.2 釕(Ru)觸媒.........................................................................24
4.2.3 釕(Ru)觸媒中分別添加鈷及鐵..............................................24
4.3 觸媒的比較.................................................................................25
4.3.1 λ等於一的結果.............................................................25
4.3.2 λ等於四的結果.............................................................26
4.4 水對甲烷化的影響.....................................................................28
4.4.1白金(Pt)觸媒.......................................................................28
4.4.2釕(Ru)觸媒.........................................................................29
4.4.3釕(Ru)觸媒中分別添加鈷及鐵..............................................29
4.5 PROX反應中的觸媒整體表現與穩定性測試.........................30
第五章 結論與建議..................................................................................31
5.1 結論.............................................................................................31
5.2 建議.............................................................................................32
參考文獻......................................................................................................34
附表..............................................................................................................40
附圖..............................................................................................................46
附錄A 誤差分析......................................................................................71
附錄B 流量計校正..................................................................................73
附錄C 其他相關圖..................................................................................74
dc.language.isozh-TW
dc.subject燃料電池zh_TW
dc.subject重組器zh_TW
dc.subject水zh_TW
dc.subject氫氣zh_TW
dc.subject甲烷zh_TW
dc.subjectFuel cellen
dc.subjectMethaneen
dc.subjectHydrogenen
dc.subjectWateren
dc.subjectReformeren
dc.title燃料電池重組器中水與觸媒對優先氧化反應的影響zh_TW
dc.titleEffect of Water and Catalysts on Preferential Oxidation in Fuel Cell Reformeren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝曉星,李奕昇,李昭仁
dc.subject.keyword燃料電池,重組器,水,氫氣,甲烷,zh_TW
dc.subject.keywordFuel cell,Reformer,Water,Hydrogen,Methane,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2007-07-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved