Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林讚標
dc.contributor.authorChien-Yu Luen
dc.contributor.author魯建宇zh_TW
dc.date.accessioned2021-06-13T01:37:31Z-
dc.date.available2016-08-09
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-08-02
dc.identifier.citation梁華軒。 (2005)。 利用抑制性扣減雜交及二維電泳尋找紅毛草在乾旱逆境下被誘導表現的基因和蛋白質。國立臺灣大學植物科學研究所碩士論文。1-89頁。
陳舜英。 (2008)。山櫻花和楊梅種子之休眠及解除機制。國立臺灣大學森林環境暨資源研究所博士論文。1-88頁。
詹喬瑋。(2008)。轉殖阿拉伯芥中過量表現AtFd3可藉由過氧化物生成促進根部
發育。國立高雄大學生物科技研究所碩士論文。1-48頁。
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K.
(2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as
transcriptional activators in abscisic acid signaling. Plant Cell 15: 63–78.
Ahn, J.W., Atwell, B.J., and Roberts, T.H. (2009). Serpin genes AtSRP2 and AtSRP3 are required for normal growth sensitivity to a DNA alkylating agent in Arabidopsis. BMC Plant Biol. 9: 52.
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P.,
and Jullien, M. (2004). Changes in endogenous abscisic acid levels during
dormancy release and maintenance of mature seeds: studies with the Cape
Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:
479–488.
Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M., and Ecker, J.R. (2003). Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. PNAS 100: 2992–2997.
Baskin, J.M., and Baskin, C.C. (2004). A classification system for seed dormancy.
Seed Sci. Res. 14: 1–16.
Bewley, J.D. (1997). Seed germination and dormancy. Plant Cell 9: 1055-1066.
Bewley, J.D., and Black, M. (1982). Physiology and biochemistry of seeds: viability, dormancy and environmental control.
Bird, P.I. (1999). Regulation of pro-apoptotic leucocyte granule serine proteinases by intracellular serpins. Immunol. Cell Biol. 77: 47–57.
Blake, P.S., Taylor, J.M., and Finch-Savage, W.E. (2002). Identification of abscisic
acid, indole-3-acetic acid, jasmonic acid, indole-3-acetonitrile, methyl
jasmonate and gibberellins in developing, dormant and stratified seeds of ash
(Fraxinus excelsior). Plant Growth Regul. 37: 119-125.
Blondel, M., Galan, J.M., Chi, Y., Lafourcade, C., Longaretti, C., Deshaies, R.J., and Peter, M. (2000). Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4. EMBO J. 19: 6085–6097.
Bonamy, P.A., and Dennis, F.G. (1977). Abscisic acid levels in seeds of peach.
J. Amer. Soc. Hort Sci. 102: 26-28.
Braz, A.S., Finnegan, J., Waterhouse, P., and Margis, R. (2004). A plant orthologue of RNase L inhibitor (RLI) is induced in plants showing RNA interference. J. Mol. Evol. 59: 20-30.
Byer, R.J., Hoyland, J.A., Dio, J., Freemont, A.J. (2000). Subtractive hybridization--genetic takeaways and the search for meaning. Int. J. Exp. Path. 81: 391-404.
Cadman, C.S.C., Toorop, P.E., Hilhorst, H.W.M., and Finch-Savage, W.E. (2006). Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46: 805–822.
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L., and Holdsworth, M.J. (2008). Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J. 53: 214–224.
Chen, S.Y., Chien, C.T., Chung, J.D., Yang, Y.S., and Kuo, S.R. (2007). Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci. Res. 17: 21-32.
Chen, J.G., Ullah, H., Temple, B., Liang, J.S., Guo, J.J., Alonso, J.M., Ecker, J.R., and Jones, A.M. (2006). RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J. Exp. Bot. 57: 2697–2708.
Chien, C.T., Chen, S.Y., and Yang, J.C. (2002). Effect of stratification and drying on the germination and storage of Prunus campanulata seeds. Taiwan J. for Sci. 4: 413-420.
Chien, C.T., Kuo-Huang, L.L., Shen, Y.C., Zhang, R., Chen, S.Y., Yang, J.C., and Pharis, R.P. (2004). Storage behavior of Chionanthus retusus seed and asynchronous development of the radicle and shoot apex during germination in relation to germination inhibitors, including abscisic acid and four phenolic glucosides. Plant Cell Physiol. 45: 1158-1167.
Craig, K.L., and Tyers, M. (1999). The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72: 299–328.
Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72: 317–364.
Delk, N.A., Johnson, K.A., Chowdhury, N.I., and Braam, J. (2005). CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol. 139: 240-253.
Diatchenko, L., Lau, Y.F., Campbell, A.P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E.D., Siebert, P.D. (1996). Suppression subtractive hybridization: a method for generating differentilly regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. 93: 6025-6030.
Dowdle, J., Ishikawa, T., Gatzek, S., Rolinski, S., and Smirnoff, N. (2007).
Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J. 52: 673-689.
Englbrecht, C.C., Heiko, S., and Siegfried, B. (2004). Conservation, diversification
and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics. 5: 39.
Fan, F., Li, X.W., Wu, Y.M., Xia, Z.S., Li, J.J., Zhu, W., and Liu, J.X. (2011).
Differential expression of expressed sequence tags in alfalfa roots under aluminum stress. Acta Physiol. Plant. 33: 539–546.
Finch-Savage, W.E., and Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytol. 171: 501–523.
Footitt, S., Slocombe, S.P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A., and Holdsworth, M. (2002). Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21: 2912–2922.
Fricke, B., Heink, S., Steffen, J., Kloetzel, P.M., and Krüger, E. (2007). The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO reports. 8: 1170-1175.
Fu, Y. (2010). The actin cytoskeleton and signaling network during pollen tube tip growth. J. Integ. Plant Biol. 52: 131-137.
Gepstein, S., Sabehi, G., Carp, M.J., Hajouj, T., Nesher, M.F., Yariv, I., Dor, C., and Bassani, M. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36: 629–642.
Gonzalez-Garcıa, M.P., Rodrıguez, D., Nicolas, C., Rodrıguez, P.L., Nicolas, G., and Lorenzo, O. (2003). Negative egulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol. 133: 135–144.
Goyal, K., Walton, L.J., and Tunnacliffe, A. (2005). LEA proteins prevent protein aggregation due to water stress. Biochem. J. 388: 151–157.
Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414: 271-276.
Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.L., Powers, S.J., Gong, F., Phillips, A.L., Hedden, P., Sun, T.P., and Thomas, S.G. (2006). Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18: 3399–3414.
Grimes, H.D., Overvoorde, P.J., Ripp, K., Franceschi, V.R., and Hitz, W.D. (1992). A 62-kD sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport. Plant Cell 4:1561-1574.
Groot, S.P.C., Kieliszewska-Rokicka, B., Vermeer, E., and Karssen, C.M. (1988). Gibberellin induced hydrolysis of endosperm cell walls in gibberellin-deficient tomato seeds prior to radicle protrusion. Planta 174: 500-504.
Grossmann, K. (2007). Auxin herbicide action: lifting the veil step by step. Plant Signal. Behav. 2: 421-423.
Guo, J.J., Wang, J.B., Xi, L., Huang, W.D., Liang, J.S., and Chen, J.G. (2009). RACK1 is a negative regulator of ABA responses in Arabidopsis. J. Exp. Bot. 60: 3819–3833.
Hara, E., Kato, T., Nakada, S., Sekiya, S., Oda, K. (1991). Subtractive cDNA cloning using oligo (dT)-latex and PCR: isolation of cDNA clones specific to undifferentiated human embyonal carcinoma cells. Nucleic Acid Res. 19: 7097-7104.
Hartmann C. (1992). Biochemical changes in harvested cherries. Postharvest Biol. Technol. 258: 89-96.
Hoad G.V. (1995). Transport of hormones in the phloem of higher plants. Plant Growth Regul. 16: 173-182.
Holm, M., Hardtke, C.S., Gaudet, R., and Deng, X.W. (2001). Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20: 118-127.
Hsu, Y.F., Tzeng, J.D., Liu, M.C., Yei, F.L., Chung, M.C., and Wang, C.S. (2008).
Identification of anther-specific/predominant genes regulated by gibberellin during development of lily anthers. J. Plant Physiol. 165: 553-563.
Hugouvieux, V., Kwak, J.M., and Schroeder, J.J. (2001). A mRNA capbiding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106: 477-487.
Hundertmark, M., and Hincha, D.K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9: 118.
Iuchi, S., Kobayashi, M., Taji, T., Naramoto, M., Seki, M., Kato, T., Tabata, S., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2001). Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27: 325–333.
Karssen, C.M., Brinkhorst Van der Swan, D.L.C., Breekland, A.E., and Koornneef, M. (1983a). Induction of dormancy during seed development by endogenous abscisic acid- Studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L) Heynh. Planta 157: 158–165.
Karssen, C.M., Zagórski, S., Kepczyński, J., and Groot, S.P.C. (1983b). Key role for endogenous gibberellins in the control of seed germination. Annals of Botany 63:71-80.
Katagiri, T., Ishiyama, K., Kato, T., Tabata, S., Kobayashi, M., and Shinozaki, K. (2005). An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J. 43:107-117.
Keith, K., Kraml, M., Dengler, N.G., and McCourt, P. (1994). fusca3: A heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6: 589–600.
Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451.
Koornneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J., and Peeters, A.J. (1998). Genetic interactions among late-flowering mutants of Arabidopsis. Genetics. 148: 885–992.
Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L.C., and Karssen, C.M. (1982). The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germination gibberellin sensitive lines of Arabidoposis thaliana (L.) Heynh. Theor. Appl. Genet. 61: 385-393.
Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., and Schroeder, J.I. (2006). The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol. 140: 127-139.
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y., and Nambara, E. (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23: 1647–1656.
Lee, S., Cheng, H., King, K.E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd,
N.P., and Peng, J. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16: 646–658.
Liang, P., and Pardee, A.B. (1992). Differential display of eukaryotic messenger RNA by mans of the polymerase chin reation. Science 257: 967-971.
Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58: 115–136.
Lindquist, S., and Craig, E.A. (1988). The heat-shock proteins. Annu. Rev. Genet. 22: 631–677.
Linster, C.L., GomezI, T.A., Christensen, K.C., Adler, L.N., Young, B.D., Brenner, C., and Clarke, S.G. (2007). Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J. Biol. Chem. 282: 18879-18885.
Lorenzo, O., Rodrıguez, D., Nicolas, G., Rodrıguez, P.L., and Nicolas, C. (2001). A new protein phosphatase 2C (FsPP2C1) induced by abscisic acid is specifically expressed in dormant beechnut seeds. Plant Physiol. 125: 1949–1956.
Lu, C., and Fedoroff, N. (2000). A mutation in the Arabidopsis HYL gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin and cytokinin. Plant Cell. 12: 2351–2366
Marion-Poll, A. (1996). Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15: 2331–2342.
McCormack, E., and Braam, J. (2003). Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol. 159: 585-598.
Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B., and Gubler, F. (2006). Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase. Plant J. 45: 942–954.
Muller-Roeber, B., and Pical, C. (2002). Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant physiol. 130: 22-46.
Nagaoka, S., and Takano, T. (2003). Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J. Exp. Bot. 54: 2231-2237.
Nambara, E., Keith, K., McCourt, P., and Naito, S. (1995). A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121: 629–636.
Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., and Shinozaki, K. (2004). Crosstalk in the response to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol. Biol. 55: 327–342.
Nicolas, C., Nicolas, G., and Rodrıguez, D. (1996). Antagonistic effects of abscisic acid and gibberellic acid on the breaking of dormancy of Fagus sylvatica seeds. Physiol. Plant. 96: 244–250.
Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., and Yamaguchi, S. (2003). Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15: 1591–1604.
Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis,
catabolism, and response pathways. Plant Cell 14: S61-S80.
Ooms, J.J.J., Leon-Kloosterziel, K.M., Bartels, D., Koornneef, M., and Karssen, C.M. (1993). Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. Plant Physiol. 102: 1185–1191.
Oracz, K., Bouteau, E.M., and Bailly, C. (2009). The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signalling during germination. Plant Physiol. 150: 494–505.
Pandey, S., Tiwary, S.B., Upadhyaya, K.C., and Sopory, S.K. (2000). Calcium signaling: linking environmental signals to cellular functions. Crit. Rev. Plant Sci. 19: 291–318
Papi, M., Sabatini, S., Bouchez, D., Camilleri, C., Costantino, P., and Vittorioso, P. (2000). Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination. Genes Dev. 14, 28–33.
Parcy, F., and Giraudat, J. (1997). Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J. 11: 693–702.
Pysh, L.D., Wysocka-Diller, J.W., Camilleri, C., Bouchez, D., and Benfey, P.N. (1999). The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROWLIKE genes. Plant J. 18: 111–119.
Rameh, L.E., Tolias, K.F., Duckworth, B.C., and Cantley, L.C. (1997). A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390: 192–196.
Risseeuw, E.P., Daskalchuk, T.E., Banks, T.W., Liu, E., Cotelesage, J., Hellmann, H., Estelle, M., Somers, D.E., and Crosby, W.L. (2003). Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J. 34: 753-767.
Salzer, P., Bonanomi, A., Beyer, K., Vögeli-Lange, R., Aeschbacher, R.A., Lange, J., Wiemken, A., Kim, D., Cook, D.R., and Boller, T. (2000). Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mole. Plant-Microbe Inter. MPMI. 13: 763–777.
Seo, P.J., Park, J.M., Kang, S.K., Kim, S.G. and Park, C.M. (2011).An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233: 189–200.
Setha, S., Kondo, S., Hiral, N., Ohigashi, H. (2005). Quantification of ABA and its
metabolites in sweet cherries using deuterium – labeled internal standards. Plant
Growth Regul. 45: 183-188.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 8: 221–227.
Silverman, G.A., Bird, P.I., Carrell, R.W., Church, F.C., Coughlin, P.B., Gettins, P.G., Irving, J.A., Lomas, D.A., Luke, C.J., Moyer, R.W., Pemberton, P.A., Remold-O'Donnell, E., Salvesen, G..S., Travis, J., and Whisstock, J.C. (2001). The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol. Chem. 276: 33293–33296.
Strader, L.C., Ritchie, S., Soule, J.D., McGinnis, K.M., and Steber, C.M. (2004). Recessive- interfering mutations in the gibberellin signaling gene SLEEPY1 are rescued by overexpression of its homologue, SNEEZY. Proc. Natl. Acad. Sci. USA 101: 12771–12776.
Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S.M.M., Takahashi, K., and Ariga, H. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Reports. 5: 213–218.
Taiz L., and Zeiger E. (2010). Plant Physiology. 5th edition. Sinauer Associates, Inc. MA.
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burdidge, A., and Taylor, I.B. (2000). Ectopic expression of a tomato 9-cisepoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant J. 23: 363-374.
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N., Iuchi, S., Kobayash, M., Yamaguchi, S., Kamiya, Y., Nambara, E., and Kawakami, N.(2008). High Temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146: 1368–1385.
Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., and Sun, T.P. (2004). DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135: 1008–1019.
Vercammen, D., Belenghi, B., van de Cotte, B., Beunens, T., Gavigan, J.A., De Rycke, R., Brackenier, A., Inze, D., Harris, J.L., and Van Breusegem, F. (2006). Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J. Mol. Biol. 364: 625–636.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579–620.
Wang, W., and Poovaiah, B.W. (1999). Interaction of plant chimeric calcium/
calmodulin-dependent protein kinase with a homolog of eukaryotic elongation
factor-1alpha. J. Biol. Chem. 274: 12001-12008.
Wareing, P.F., and Saunders, P.F. (1971). Hormones and dormancy. Annual Review of Plant Physiology. 22: 261-288.
Wu, Y., Kuzma, J., Marechal, E., Graeff, R., Lee, H.C., Foster, R., and Chua, N.H. (1997). Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278: 2126–2130.
Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D., and Zhu, J.K. (2001). Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev. Cell 1: 771–781.
Xu, N., and Bewley, J.D. (1991). Sensitivity to abscisic acid and osmoticum changes during embryogenesis of alfalfa (Medicago sativa). J. Exp. Bot. 42: 821-826.
Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. (2004). Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16: 367–378.
Zarska-Maciejewska, B., Sinska, B.I., Witkowska, and E., Lewak, S. (1980). Low temperature, gibberellin and acid lipase activity in removal of apple seed dormancy. Physiol. Plant. 48: 532-535.
Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004). Phospholipase D alpha derived
phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. 101: 9508-9512.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30118-
dc.description.abstract植物為了選擇一個最合適的發芽時期,透過複雜的機制來調控種子休眠,近幾年來關於休眠方面的研究雖然很多,但是關於休眠的分子調控機制仍然了解得不夠透徹,尤其是關於非模式植物方面的研究了解的更少。因此,本研究以山櫻花種子做為材料,研究休眠種子在打破休眠時的相關基因調控。山櫻花新鮮收穫的種子具有很強的休眠性,需要暖溫處理和隨後的低溫層積處理才能有效的打破休眠,研究顯示,山櫻花種子需要四週的暖溫層積,和隨後八週的低溫層積,才會獲得最高的發芽率,此特殊的機制是阿拉伯芥所不具有的。低溫層積對休眠種子所造成的影響,具有何種生理功能以及基因的調控已有許多的研究;但暖溫層積有何種功效目前還不太清楚,因此將研究重點放在暖溫層積方面,利用分子生物學的抑制性扣減雜交技術,尋找在暖溫層積過程中休眠種子的基因調控模式,探討暖溫層積對於休眠種子的影響。將成熟種子採收洗淨並室內陰乾三天,之後直接進行層積處理,暖溫層積處理在進入第二和第七天分別進行扣減抑制雜合反應,完成兩天和七天暖溫層積處理之扣減式基因庫,先用Reverse Northern確認所篩選到的基因是否確實有差異性表現,再以電泳方式除去基因大小相同的片段後,才將其送去定序。序列分析比對後,成功得到暖溫層積後被大量誘導表現以及被抑制的基因共59個,分別在暖溫層積過程中扮演著各自的生理功能,包含代謝、轉錄和轉譯、訊息傳導、細胞中的過程、生長發育、養分儲存、逆境相關蛋白等。暖溫層積過程中ABA反應負調控者(negative regulator) RACK1和PP2CA的大量表現,以及ABA反應正向調控因子(positive component) 1-phosphatidylinositol-4- phosphate 5-kinase的抑制,具有重要的生理意義,顯示暖溫層積或許透過調控這些基因來降低胚軸對ABA的敏感度,以便為將來種子由休眠狀態轉變為種子發芽狀態做好準備。此外,在暖溫層積進入第七天時,山櫻花種子胚軸內ABA含量也有顯著性的下降情況。綜合研究結果來看,雖然在只有暖溫層積的情況下山櫻花種子不能發芽(GAs含量低),但暖溫層積會透過降低種子胚軸內的ABA含量,以及透過大量表現ABA反應負調控者和抑制ABA反應正向調控因子來減少種子胚軸對ABA的敏感度,來調控種子的休眠解除。zh_TW
dc.description.abstractSeed dormancy is regulated by complex networks in order to optimize the timing of germination. Although over 5000 publications on seed dormancy have appeared in the past decades, the underlying molecular regulatory mechanisms are not fully understood. Fresh seeds of Formoan cherry (Prunus campanulata Maxim), a popular ornamental tree, are deeply dormant and require warm stratification followed by cold stratification for complete dormancy-breaking. This operation is special to Formoan cherry but not to Arabidopsis. Many studies have revealed the effect of cold stratification on dormancy-breaking, but the effect of warm stratification is unclear. In this study we used the subtractive suppression hybridization (SSH) to study the gene regulation of prunus seeds undergoing warm stratification. Formoan cherry seeds were harvested, cleaned and air-dried for 3 days to reduce the water content to 15% of fresh weight and followed by warm stratification. At the second and seventh days of warm treatment, seed RNAs were extracted for SSH experiments. After constructed the subtraction libraries of second and seventh days against zero day of warm stratification, we performed reverse northern assays to confirm the upregulated and down-regulated genes. Clones obtained from this study were sequenced after removing duplicated clone containing the same length of DNA fragments. Using the website to blast the fragment sequences, we obtained 59 genes were up-regulated and down-regulated that play functions in metabolism, transcription, translation, signal transduction, growth and development, nutrient storage and stress-related. Interestingly, two ABA negative regulators, RACK1 and PP2CA were highly expressed and one positive component, 1-phosphatidylinositol-4- phosphate 5-kinase was repressed. These three regulators could reduce the ABA sensitivity of prunus seeds in the beginning of warm stratification. Moreover, we found that the ABA content was significantly decreased at the seventh days of warm stratification. Taken together, warm stratification treatment alone can not promote the seed germination due to low GA content, but can reduce the ABA sensitivity by expressing ABA negative regulators and repressing positive components in the beginning when ABA content is still high and followed by reduced the ABA content in the seeds.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:37:31Z (GMT). No. of bitstreams: 1
ntu-100-R97b42014-1.pdf: 3588719 bytes, checksum: 1dac44ea1bf0fff94f30e51d40865550 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
致謝----------------------------------------------------------------------------------------------II
摘要----------------------------------------------------------------------------------------------III
Abstract------------------------------------------------------------------------------------------IV
第一章 序論---------------------------------------------------------------------------------1
1.1 起源-----------------------------------------------------------------------------------1
1.2 種子休眠的分類--------------------------------------------------------------------1
1.3 植物荷爾蒙與種子休眠-----------------------------------------------------------1
1.3.1激勃素(GAs)與種子休眠解除和發芽相關研究-------------------------3
1.3.2離層酸(ABA)與種子休眠的相關研究------------------------------------3
1.4 解除休眠的相關研究--------------------------------------------------------------4
1.5 抑制性扣減雜交--------------------------------------------------------------------6
1.6 山櫻花種子之休眠及解除機制的研究-----------------------------------------7
1.7 研究策略與目標--------------------------------------------------------------------8
第二章 材料與方法------------------------------------------------------------------------9
2.1 植物材料採集與處理--------------------------------------------------------------9
2.2 暖溫層積處理-----------------------------------------------------------------------9
2.3 山櫻花種子的水分含量與百粒重-----------------------------------------------9
2.4 扣減抑制雜合反應-----------------------------------------------------------------9
2.5 Reverse Northern blot analysis-----------------------------------------------------9
2.6 資料庫鑑定比對-------------------------------------------------------------------10
2.7 Real-time PCR-----------------------------------------------------------------------10
2.8 利用ELISA定量種子胚軸內ABA含量--------------------------------------10
第三章 結果--------------------------------------------------------------------------------11
3.1 山櫻花種子的構造和縱剖面-----------------------------------------------------11
3.2 暖溫層積處理對山櫻花種子水分含量與百粒重的影響--------------------11
3.3 暖溫層積處理過程中山櫻花種子胚軸ABA含量的變化------------------12
3.4 暖溫層積處理過程中山櫻花休眠種子的基因變化--------------------------12
3.4.1 兩天暖溫層積處理後表現量下降的基因-------------------------------12
3.4.2 七天暖溫層積處理後表現量下降的基因-------------------------------14
3.4.3 兩天暖溫層積處理後表現量上升的基因-------------------------------18
3.4.4 七天暖溫層積處理後表現量上升的基因-------------------------------20
3.5以Reverse Northern blot和Real time技術再次確認基因變化------------25
第四章 討論---------------------------------------------------------------------------------26
4.1暖溫層積處理對於山櫻花休眠種子之影響------------------------------------26
4.2暖溫層積處理過程中山櫻花休眠種子的基因調控---------------------------26
4.2.1暖溫層積處理後表現量下降的基因--------------------------------------27
4.2.2暖溫層積處理後表現量上升的基因--------------------------------------27
4.3暖溫層積處理對於山櫻花種子之休眠及解除機制探討--------------------28
4.4未來研究方向-----------------------------------------------------------------------30
參考文獻----------------------------------------------------------------------------------------31
圖表----------------------------------------------------------------------------------------------40
表格----------------------------------------------------------------------------------------------48
附錄----------------------------------------------------------------------------------------------53
圖目錄
Fig. 1 Fruits and seeds of Formoan cherry-------------------------------------------------40
Fig. 2 Moisture content and 100 seeds weight of Formoan cherry seeds--------------41
Fig. 3 Abscisic acid content of embryonic axis from fresh or warm stratified
Formoan cherry seeds------------------------------------------------------------------42
Fig. 4 Selection of differentially expressed genes during warm stratification of Formoan cherry seeds------------------------------------------------------------------43
Fig. 5 Screening for differential expression genes after 2-day warm stratification
with reversed northern blot analysis-------------------------------------------------44
Fig. 6 Screening for differential expression genes after 7-day warm stratification
with reversed northern blot analysis-------------------------------------------------45
Fig. 7 Screening for differential expression genes after 7-day warm stratification
with reversed northern blot analysis-------------------------------------------------46
Fig. 8 The relative expression level of RACK1B and PP2CA under warm stratification-----------------------------------------------------------------------------47
表目錄
表1. 山櫻花新鮮種子兩天暖溫層積處理後表現量下降的基因---------------------48
表2. 山櫻花新鮮種子七天暖溫層積處理後表現量下降的基因---------------------49
表3. 山櫻花新鮮種子兩天暖溫層積處理後表現量上升的基因---------------------50
表4. 山櫻花新鮮種子七天暖溫層積處理後表現量上升的基因---------------------51
dc.language.isozh-TW
dc.subject離層酸zh_TW
dc.subject扣減抑制雜合反應zh_TW
dc.subject暖溫層積zh_TW
dc.subject休眠種子zh_TW
dc.subject山櫻花zh_TW
dc.subjectwarm stratificationen
dc.subjectabscisic aciden
dc.subjectFormoan cherryen
dc.subjectseed dormancyen
dc.subjectsubtractive suppression hybridizationen
dc.title暖溫層積處理過程中山櫻花休眠種子的基因調控zh_TW
dc.titleThe gene regulated in dormant seed of Prunus campanulata during warm stratificationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張英?,鄭萬興,靳宗洛,簡慶德
dc.subject.keyword山櫻花,休眠種子,暖溫層積,離層酸,扣減抑制雜合反應,zh_TW
dc.subject.keywordFormoan cherry,seed dormancy,warm stratification,abscisic acid,subtractive suppression hybridization,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2011-08-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved