請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 毛明華(Ming-Hua Mao) | |
| dc.contributor.author | Yu-Sheng Huang | en |
| dc.contributor.author | 黃郁升 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:32:26Z | - |
| dc.date.available | 2008-07-18 | |
| dc.date.copyright | 2007-07-18 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-13 | |
| dc.identifier.citation | 1 Sabine Dommers, Vasily V. Temnov, and Ulrike Woggon, “Complete ground state
gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier,” Appl. Phys. Lett. 90, 033508, 2007. 2 S. Shepard, “Optical Networking Crash Course,” McGraw-Hill, NY., pp. 120, 2001. 3 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, pp. 366-368, 1962. 4 Zh. I. Alferov, “The History and Future of Semiconductor Heterostructures from the Point of View of a Russian Scientist,” Physica Scripta. vol. T68, 32-45, 1996. 5 Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., 40, 939, 1982. 6 Kirstaedter. N., N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, S. S. Ruvimov, M. V. Maximov, P. S. Kop’ev, Zh. I. Alferov, U. Richter, P. Werner, U. Gosele, and J. Heydenreich, Electron. Lett., 30, pp.1416, 1994. 7 D. Bimberg, Marius Grundmann, and Nikolai N. Ledentsov, “Quantum Dot Heterostructures,” John Wiley and Sons, 1999. 8 Dongxun Ouyang, “Characterization of lasers based on self-organized In(Ga)As quantum dots,” Berlin 2003. 9 D. Bimberg, M. Grundmann, N. N. Ledentsov, Ch. Ribbat, R. Sellin, Zh. I. Alferov, P. S. Kop’ev, M. V. Maximov, V. M. Ustinov, A. E. Zhukov, and J. A. Lott. “Quantum Dot Lasers: Theory and Experiment”, AIP Conference Proceedings, vol. 560, pp. 178-197,2001. 10 蔡緒孝, “邊射型漸耦合式於1.55μm 波長之半導體光放大器與光檢測器單晶片 整合,” 碩士論文--國立中央大學電機工程研究所, 2006. 11 Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Press, 2002. 12 徐明鋒, “利用半導體光放大器實現多播波長轉換器,” 碩士論文--國立台灣科技 大學電子工程系, 2005. 13 B. W. Hakki, and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys., 46, pp. 1299-1306, 1975. 14 C. H. Henry, R. A. Logan, and F. R. Merritt, “Measurement of gain and absorption spectra in AlGaAs buried heterostructure lasers,” J. Appl. Phys., 51, pp. 3042-3050, 1980. 15 A. Oster, G. Erbert and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett., vol. 33, No. 10, 1997. 16 J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett., 75, pp. 2527-2529, 1999. 17 Y. C. Xin, Yan Li, Anthony Martinez, Thomas J. Rotter, Hui Su, Lei Zhang, Allen L. Gray, S. Luong, K. Sun, Z. Zou, Jhon Zilko, Petros M. Varagis, and Luke F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electronics, 42, pp. 725-732, 2006. 18 L. A. Coldren and S. C. Corzine, “Diode lasers and photonic integrated circuits,”Wiley, 1995. 19 Jyh-Shyang Wang, Ru-Shang Hsiao, Jenn-Fang Chen, Chu-Shou Yang, Gray Lin, Chiu-Yueh Liang, Chih-Ming Lai, Hui-Yu Liu, Tung-Wei Chi, and Jim-Y. Chi, “Engineering Laser Gain Spectrum Using Electronic Vertically Coupled InAs–GaAs Quantum Dots,” IEEE Photonics Technology Letters, vol. 17, NO. 8, 2005. 20 邱科智, “量子點與量子井高速調變特性,” 碩士論文--國立台灣大學電子工程研 究所, 2006. 21 A. Oster, G. Erbert and H. Wenzel, “Gain spectra measurements by a variable stripe length method with current injection,” Electron. Lett., 8th, vol. 33, No. 10, 1997 22 L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Paci.ci, L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Optics Communications, vol.229 pp.337–348, 2004. 23 楊崇淵, “以光激發法研究半導體量子結構之光學增益,” 碩士論文--國立台灣大 學電子工程研究所, 2006. 24 J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett., 75, pp. 2527-2529, 1999. 25 Y. C. Xin, Yan Li, Anthony Martinez, Thomas J. Rotter, Hui Su, Lei Zhang, Allen L. Gray, S. Luong, K. Sun, Z. Zou, Jhon Zilko, Petros M. Varagis, and Luke F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electronics, 42, pp. 725-732, 2006. 26 S. Bognar, M. Grundmann, O. Stier, D. Ouyang, C. Ribbat, R. Heitz, R. Sellin, and D. Bimberg, “Large modal gain of InAs/GaAs quantum dot lasers,” Phys. Stat. Sol. (b) 224,No. 3, pp. 823-826, 2001. 27 M.-H. Mao, L.-C. Su, K.-C. Wang, W.-S. Liu, P.-C. Chiu, and J.-I. Chyi, “Spectrally-resolved dynamics of two-state lasing in quantum-dot lasers,” in Proc. 18th Annu. Meeting IEEE Laser and Electro-Optics Society, Sydney, Australia, pp. 56-57, 2005. 28 王關鑑, “量子點雷射動態特性及雙能態放光機制分析,” 碩士論文--國立台灣大 學光電工程研究所, 2005. 29 A. Markus, J. X. Chen, C. Paranthoen, and A.Fiore, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett., vol. 82, 1818-1820, Mar. 2003. 30 林春松, “硒化鎘鋅薄膜與硒化鋅/硒化鎘鋅多重量子井螢光光譜的時間解析研 究,” 碩士論文--國立中山大學物理研究所, 2003. 31 Jörg Siegert, “Semiconductor Quantum Dots Studied by Time-Resolved Photoluminescence Techniques,” May 2004. 32 S. Kinoshita, H. Ozawa, and Y. Kanematsu, I. Tanaka, N. Sugimoto and S. Fujiwara, “Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy,” Rev. Sci. Instrum., vol. 71, No. 9, pp.3317, September 2000. 33 P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and Dieter Bimberg, “Spectral Hole-Burning and Carrier-Heating Dynamics in InGaAs Quantum-Dot Amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, No. 3, May/June 2000. 34 Matthias Lämmlin, “GaAs-Based Semiconductor Optical Amplifiers with Quantum Dots as an Active Medium,” Berlin 2007. 35 N. A. Olsson, M. G. Oberg, L. D. Tzeng, and T. Cella, “Ultra-low reflectivity 1.5μm semiconductor lasers,” Electronl. Lett., vol. 24, pp.569-570, 1988. 36 陳家銘, “設計與製作應用於光閘開關之增益箝制半導體光放大器,” 碩士論文— 國立台灣科技大學電子工程系, 2005. 37 余治浩, “量子點與量子井結構光學增益及損耗之量測與分析,” 碩士論文--國立 台灣大學光電工程研究所, 2005. 38 高健凱, “以電激發長度變化法量測量子點結構之光學增益,” 碩士論文--國立 台灣大學光電工程研究所, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30043 | - |
| dc.description.abstract | 量子點雷射因具有較低的臨界電流密度、高光學增益以及高特徵溫度等特
性,目前已引起廣泛的研究,而半導體光放大器因光纖網路的蓬勃發展,頻寬需 求增加,極高增益與極大調變頻寬的元件更是目前非常熱門的研究主題。本論文 針對量子點的光學增益與載子的動態行為分成兩大主題探討。 在第一部分中,我們利用改良式多段元件量測半導體光放大器的模態增益與 吸收頻譜。文獻上有眾多方法可以得到增益頻譜,例如Hakki-Paoli method、Henry method、長度變化法(Variable stripe length method)、多段元件法(Multisection device) 等等,每個方法都有其優缺點,例如Hakki-Paoli method 需要高解析度的頻譜分析 儀,Henry method 基於一些假設,屬於較為間接的方法,長度變化法在光路的對 準以及耦合上易有誤差,而多段元件法會有漏電流的問題。我們利用接地的方式 消除了漏電流對兩段式元件造成電流密度不均的影響。接著利用三段式結構,也 就是改良式多段元件法(Modified segmented contact method)來消除未被波導侷限的 漏光項。最後利用改良式多段元件法的精確解檢驗第二段與第三段的漏光是否可 忽略,也就是近似解是否合理。 在第二部份中,我們用時間解析之激發-探測(pump-probe)實驗架構來研究量子 點內載子的動態行為(Carrier dynamics)與載子的分佈(Carrier distribution)。首先我 們會探討外部光源由樣品正上方入射時產生的載子在半導體光放大器以及雷射結 構上的分佈有何差異。至於時間解析的pump-probe 實驗,我們用76MHz 重複率 的鎖模藍寶石飛秒雷射(Mode-Locked Ti: Sapphire Femto-second Laser)當作光源,以 半導體光放大器結構來量測載子因為自發放光的時間常數,以及用雷射結構操作 在接近臨界電流時的實驗條件來量測激發放光的動態行為。由兩種不同結構的 pump-probe 實驗比較可以發現自發放光與激發放光的時間尺度上至少差了一個數 量級。 | zh_TW |
| dc.description.abstract | Quantum-dot lasers have attracted much interest in recent years due to their
superior properties, such as low threshold current density, high optical gain and high characteristic temperature. Several approaches have been reported in the literature to measure the gain spectra of semiconductor lasers. Henry’s method deduces the gain indirectly from the spontaneous emission spectra under some assumptions. Using Hakki-Paoli method, the gain is calculated from the contrast of modal spectrum oscillations due to the Fabry-Perot cavity below the threshold. A major drawback of this method is the requirement of a high-resolution spectrograph to obtain the true contrasts. In this thesis, net modal gain and absorption spectra were measured by a variable stripe length (VSL) method for an electrically pumped multisection device. This measurement is not limited by the lasing threshold and can be applied even at high excitation densities. Meanwhile, a modified segmented contact (MSC) method is implemented by manipulating the data from single, double, and triple biased sections, respectively. The new approach subtracts background signals from the unguided spontaneous emission, resulting in clean, accurate gain spectra. Besides, the inaccurate estimation of injection current due to current leakage through the finite gap resistance between two adjacent sections is minimized by connecting the unused sections to the ground. The exact solutions of MSC method were also calculated and applied to estimate the magnitude of unguided spontaneous emission of each section. On the other hand, high frequency response and large modulation bandwidth are the other superiorities of quantum dot lasers and amplifiers. Ultrahigh bit rates in the amplifier require ultrafast gain recovery, which is mainly limited by carrier capture and relaxation process in quantum dots1. Time resolved pump-probe experiments were carried out under room temperature in order to understand the carrier dynamics, such as carrier life time, capture time, and relaxation time of our devices. Using optical excitation into GaAs barrier through the window on the top of the device by two degenerate pump and probe laser pulses, we can obtain the carrier life time under spontaneous emission or stimulated emission from semiconductor optical amplifiers or laser devices, respectively. The gain saturation and state filling phenomena were also been observed in our experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:32:26Z (GMT). No. of bitstreams: 1 ntu-96-R94943064-1.pdf: 1620039 bytes, checksum: 7806b2ab779c94dea1555776c529efd0 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 致謝............................................................................................. II
摘要............................................................................................III ABSTRACT...............................................................................IV 目錄............................................................................................VI 圖目錄........................................................................................IX 表目錄.....................................................................................XIV 第一章 序論............................................................................ 1 1.1 半導體雷射簡介.............................................................................2 1.2 量子結構與能態密度.....................................................................3 1.3 半導體光放大器.............................................................................5 1.4 研究動機.........................................................................................7 1.5 論文架構.........................................................................................8 第二章 實驗理論.................................................................. 10 2.1 半導體雷射的光學特性...............................................................10 2.1.1 光學增益與損耗............................................................................ 10 2.1.2 增益飽和........................................................................................ 13 2.1.3 量子效率與內部損耗.................................................................... 15 2.1.4 透明電流密度與微分增益............................................................ 15 2.1.5 半導體光放大器的偏極化特性.................................................... 16 2.2 各種增益頻譜的量測方法...........................................................17 2.2.1 Hakki-Paoli method........................................................................17 2.2.2 Henry method .................................................................................17 2.2.3 半導體光放大器的單通道增益.................................................... 18 2.2.4 電激發長度變化法........................................................................ 18 2.2.5 光激發長度變化法........................................................................ 19 2.2.6 多段元件法.................................................................................... 20 2.2.7 改良式多段元件法........................................................................ 21 2.2.8 各種方法綜合分析比較................................................................ 24 2.3 量子點雷射中載子與光子的動態行為.......................................28 2.3.1 變率方程式.................................................................................... 28 2.3.2 雙能態放光.................................................................................... 31 2.3.3 激發-探測實驗原理....................................................................... 32 第三章 元件製作及實驗量測架構....................................... 35 3.1 磊晶材料與結構...........................................................................35 3.2 元件製程.......................................................................................37 3.3.1 垂直波導與傾斜波導.................................................................... 37 3.3.1 標準製程步驟................................................................................ 39 3.3 實驗量測架構...............................................................................44 3.3.1 多段元件量測系統........................................................................ 44 3.3.1 激發-探測量測系統....................................................................... 46 第四章 實驗結果與討論....................................................... 49 4.1 TR821 增益與吸收頻譜的特性研究...........................................49 4.1.1 漏電流的修正................................................................................ 52 4.1.2 未被侷限的自發放光的修正........................................................ 54 4.1.3 結果與討論.................................................................................... 61 4.2 DO1128 增益與吸收頻譜的特性研究........................................66 4.3 外部激發光源實驗.......................................................................72 4.3.1 單獨一道脈衝光產生的載子分佈................................................ 73 4.3.2 半導體光放大器的pump-probe 實驗........................................... 78 4.3.3 雷射結構的pump-probe 實驗....................................................... 85 第五章 總結.......................................................................... 92 5.1 論文回顧.......................................................................................92 5.2 未來展望.......................................................................................94 參考文獻.................................................................................... 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 載子動態 | zh_TW |
| dc.subject | 量子點雷射 | zh_TW |
| dc.subject | 光學增益 | zh_TW |
| dc.subject | optical gain | en |
| dc.subject | Quantum dot laser | en |
| dc.subject | carrier dynamics | en |
| dc.title | 量子點雷射之光學增益與載子動態特性研究 | zh_TW |
| dc.title | Study of Optical Gain and Carrier Dynamics in Quantum-Dot Laser Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林浩雄,王智祥 | |
| dc.subject.keyword | 量子點雷射,光學增益,載子動態, | zh_TW |
| dc.subject.keyword | Quantum dot laser,optical gain,carrier dynamics, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
