Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明
dc.contributor.authorChun-Chieh Changen
dc.contributor.author張俊傑zh_TW
dc.date.accessioned2021-06-13T01:32:00Z-
dc.date.available2007-07-23
dc.date.copyright2007-07-23
dc.date.issued2007
dc.date.submitted2007-07-17
dc.identifier.citation[1] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, 2(suberscript nd) edition, WILEY-INTERSCIENCE, 2000.
[2] K. Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Spaces,” Philosoghical Magazine, Series 6, Vol. 2, 559-572, 1901.
[3] H. Hotelling, “Analysis of a complex of Statistical Variables into Principal Components,” Journal of Educational Psychology, Vol.24, 417-441, 1993.
[4] J. M. Gauch, “Image Segmentation and Analysis via Multiscale Gradient Watershed Hierarchies,” IEEE Transaction on Image Processing, Vol. 8 no. 1 January 1999.
[5] L. Vincent, P. Soille, “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 6, 583-598, June 1991.
[6] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms.” New York: PLENUM, 1981.
[7] M. Kass, A Witkin, D Terzopoulos, “Snake: Actour Contour Models.” Int. J. Comput. Vision, 1: 321-331, 1987.
[8] C. Xu, J. L. Prince, “Snakes, shapes, and gradient vector flow.” IEEE Trans. Image Processing 7: 359-369, 1998.
[9] L. D. Cohen, I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images.” IEEE Trans. Pattern Anal. Machine Intel. 15: 1131-1147, 1993.
[10] S. R. Gunn, M. S. Nixon, “A robust snake implementation: A dual active contour.” IEEE Trans. PAMI 19: 63-68, 1998.
[11] M. Kerschner, “Homologous twin snakes integrated in a bundle block adjustment.” Proc. of Symp. on Object Recognition and Scene Classification from Multispectral and Multisensor Pixels, Band32, 3/1, 244-249, 1998.
[12] G. A. Giraldi, L. M. Goncalves, “Dual topologically adaptable snakes.” Proc. the 5th Joint Conf. on Inform. Sci. 2: 103-106, 1998.
[13]陳博量,“能量區域化與具中隔保留能力之區域單元競爭演算法,”台大醫工所碩士論文, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30036-
dc.description.abstract隨著種種醫療儀器成像技術的快速進步,在臨床診斷上,專業的醫護人員可以藉由針對不同組織所呈現的數位醫學影像,達到更準確的初步病情診斷;重要的是,藉由此種非侵入式的診斷方式,除了快速、容易獲得,更可免除病人在非必要的情形,就直接進行侵入式切片檢查、導管手術等具有一定風險且伴隨相當壓力的診斷方式。
本研究所使用的是縱向連續切面的電腦斷層掃瞄影像,目的在於提出一套完整的自動分割演算法,適用於即時的三維醫學影像平台上,快速且客觀地將空間中感興趣的冠狀動脈分割出來,並且對於其中具關鍵性的斑塊、血管壁體積,依照影像特徵客觀地計算與分析,作為臨床研究統計的輔助工具。
我們所提出的方法,主要可分為兩步驟:冠狀動脈血管影像分割與斑塊體積估計演算法。前半段將會先對影像去除雜訊,再配合所提出的連通路徑演算法與主成分分析演算法將空間中感興趣的血管進行座標轉換的直立動作,接著使用分水嶺演算法產生初始的區域單元,從使用者給定的血管起始層根據一系列所提出來的血管成長準則,將三維空間中的血管自動化分割出來。
後者根據已分割出來的冠狀動脈,如果管壁中存在硬化的鈣化組織,則先以形變模型的概念將其分割出來,其餘部分或是只有初期軟性斑塊的冠狀動脈,則使用統計學上的模糊分群演算法,將斑塊、血管壁、與血液部分分類。
在過去的臨床診斷上,往往在計算斑塊、血管壁體積的部分,都需要大量且費時的人工圈選,這不僅需要多年的臨床經驗累積,並且常常缺乏客觀且具說服力的標準,故在判讀可能的病因時,較不易獲得廣泛認同。而本研究提出的演算法,可以最少的人為操作,達到自動且客觀的目的。
zh_TW
dc.description.abstractWith the rapid improvement of medical imaging technologies, medical doctors are able to make the first diagnosis more accurately based on the different tissue information revealed by various medical imaging modalities. More importantly, its noninvasiveness not only promises a fast and easy diagnosis, but also greatly reduced the needs of invasive surgery, e.g., biopsy, cardiac catheterization, etc..
This study aims to develop an automatic segmentation algorithm for segmentation of the coronary artery of interest in a volume of CT images, which is composed of a set of 2D axial slices. The ultimate goal is to characterize the plaques and calcifications in the coronary artery using such indicators as volumes, intensity distribution, and so on, to assist diagnosis of coronary diseases.
The proposed method is comprised of two major points. One is an automatic image segmentation algorithm for coronary artery based on the series CT images. The other is volume estimation for the plaque and calcification in a vessel segment.
The main steps in the vessel segmentation algorithm include de-noising, end-marker connection, using principal component analysis to re-align the vessel along the vertical direction, using watershed transformation to generate cells, and segmenting the vessel using cell-based region growing. Based on the segmented coronary artery, the calcification is first extracted by a 3D deformable model if it exists. Following that, the plaques and vessel walls are identified by using a fuzzy C-mean clustering algorithm.
Conventionally, it is a tedious task to estimate the volumes of the plaques and vessel walls. It not only takes an enormous amount of time to delineate the objects of interest manually, but also requires tremendous clinical experience. Moreover, it often lacks of objective end convincing standard so that the diagnosis may vary with medical doctors. Although in a preliminary development stage, the promising results achieved in this study shed the light of an automatic and objective analysis of coronary diseases using a volume of CT images.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:32:00Z (GMT). No. of bitstreams: 1
ntu-96-R94548045-1.pdf: 4413625 bytes, checksum: cffba776d850be989dbc06f4fcf26a3f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書
誌謝
中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………… ii
目錄 …………………………………………………………………… iv
圖表目錄 ……………………………………………………… vi
第一章:緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 資料與研究環境 3
1.4 論文架構 4
第二章:演算法介紹 5
2.1 數學形態學演算法(Mathematical Morphology) 5
2.2 主成分分析演算法( PCA, Principal Component Analysis )6
2.3 分水嶺演算法(Watershed Algorithm) 7
2.4 木條曲線理論(B-Spline Curve) 9
2.4.1 B-Spline基本特性 9
2.4.2 B-Spline曲線數學模式 9
2.4.3 Cubic B-Spline曲線 11
2.5 模糊分群法(Fuzzy C Mean) 13
2.6 形變模型(Deformable Model) 14
第三章:冠狀動脈分割演算法 16
3.1 演算法流程圖 16
3.2 降低雜訊 16
3.3 人工給定目標血管的起始點與終止點 17
3.4 高斯分佈模型 17
3.5 閥值演算法 18
3.6 連通路徑演算法 18
3.7 主成分分析演算法與影像資料轉換 20
3.8 分水嶺演算法 (Watershed Algorithm) 22
3.9 人工給定血管起始層 23
3.10 血管成長演算法 (Vessel Growing Algorithm) 23
3.11 成長血管的後處理 (Post-Processing for Grew Vessel)28
第四章:斑塊與血管壁估計演算法 30
4.1 純斑塊類(Plaque Only) 30
4.2 混合與純鈣化類 31
4.2.1 鈣化像素起始群 31
4.2.2 形變曲面模型(Deformable Surface Model) 32
4.2.3 三維空間區域成長法(3D Region Growing) 33
4.2.4 形態學後處理與模糊分群法(Fuzzy C Mean Clustering)34
第五章:結果與討論 35
5.1 Case01:純軟性斑塊 37
5.2 Case02:混合類斑塊 38
5.3 Case03:鈣化類斑塊(ID_c06) 39
5.4 Case04:鈣化類斑塊 (ID_10) 40
5.5 Case05:鈣化類斑塊 (ID_c01) 41
5.6 Case06:鈣化類斑塊 (ID_c02) 42
5.7 Case07:鈣化類斑塊 (ID_c04) 43
第六章:結論與未來研究方向 44
參考文獻 46
dc.language.isozh-TW
dc.subject影像分割zh_TW
dc.subject分水嶺zh_TW
dc.subject醫學影像zh_TW
dc.subject侵入式zh_TW
dc.subject冠狀動脈zh_TW
dc.subject斑塊zh_TW
dc.subject主成分分析zh_TW
dc.subjectmedical imagesen
dc.subjectfuzzy C-mean clusteringen
dc.subjectcoronary arteryen
dc.subjectsegmentationen
dc.subjectprincipal component analysisen
dc.subjectwatershed transformationen
dc.subjectplaqueen
dc.title電腦斷層掃描冠狀動脈影像分割與斑塊體積估計演算法之研究zh_TW
dc.titleCoronary Artery Segmentation and Plaque Estimation on CT Imagesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫永年,詹寶珠,許志宇,王宗道,楊炳德
dc.subject.keyword醫學影像,侵入式,冠狀動脈,斑塊,影像分割,主成分分析,分水嶺,zh_TW
dc.subject.keywordmedical images,segmentation,coronary artery,plaque,watershed transformation,principal component analysis,fuzzy C-mean clustering,en
dc.relation.page47
dc.rights.note有償授權
dc.date.accepted2007-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved