Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30034
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林巍聳
dc.contributor.authorYu-Chun Shihen
dc.contributor.author施宇駿zh_TW
dc.date.accessioned2021-06-13T01:31:54Z-
dc.date.available2007-07-19
dc.date.copyright2007-07-19
dc.date.issued2007
dc.date.submitted2007-07-12
dc.identifier.citation[Atreya, 2006] A.R. Atreya, B. C. Cattle, B. M. Collins, B. Essenburg, G. H. Franken,
A. M. Saxe, S. N. SchiRres, and A. L. Kornhauser.“ Prospect Eleven:
Princeton University's Entry in the 2005 DARPA Grand Challenge”. Sub-mitted to the Journal of Field Robotics, 2006.
[Ahlvers, 2003] U. Ahlvers, U. Zoelzer, S. Rechmeier. “FFT-based Disparity Estimation for Stereo Image Coding”. In Proc. ICIP, Barcelona, Spain, 2003.
[Ahlvers, 2005] U. Ahlvers, U. Zoelzer, S. Rechmeier “ A Framework for Multiresolution Stereoscopic Image Processing”
[Burt, 1983] P. J. Burt, E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” Published in. IEEE Transactions on Communication, vol. COM-31, pp. 532-540, 1983.
[Barnard, 1987] S. T. Barnard, M. A. Fischler, “Stereo Vision,” in Encyclopedia of Artificial Intelligence, New York: John Wiley, pp. 1083-1090, 1987.
[Badal, 1994] Badal S,Ravela S,Draper B.A “practical obstacle detection and avoidance system”.In:Proc of the 2nd IEEE Workshop on Applications of Computer Vision.Sarasota,USA,1994.97∼104
[Brown, 2003] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Trans. On Pattern Recognition and Machine Intelligence, vol. 25, no. 8, pp. 993-1008, Aug. 2003.
[Collins, 2006] Brendan M. Collins ,Alain L. Kornhauser “Stereo Vision for Obstacle Detection in Autonomous Navigation” . Princeton University. May 24, 2006. Computer Science. Professor, Operations Research. Class of 2008,
[Chuang,2005] Wei-Song Lin, Ming-Kang Chuang and Glorious Tien, July 10-12, 2005, “Autonomous mobile robot navigation using stereovision”, in Proceedings of the 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan, pp. 410-415, NSC93-2213-E002-106.
[Fleet,1991] Fleet, D.J., Jepson, A.D., and Jenkin, M. “Phase Based Disparity Measurement.” CVGIP: Image Understanding, 53(2): 198--210
[Gonzalez,2004] Gonzalez, Woods, and Eddins, “Digital Image Processing Using “MATLAB, Prentice Hall, 2004
[Gonzalez,2002] R.C Gonzalez and R.E. Woods, “Digital Image Processing”, 2nded., Prentice Hall, 2002.
[Henkel, 1997] Rolf D. Henkel ” A Fast Parallel Algorithm for Stereovision.” In Proc of the Int. Workshop on Computer Architecture for Machine Perception, CAMP'97 in Boston, (ed. C.C. Weems Jr.), IEEE Computer Society Press, Los Alamitos 1997, 200-203
[Hirschmuller, 2000] H. Hirschmuller, P. R. Innocent, J. Garibaldi, “Real-Time Correlation-Based Stereo Vision with Reduced Border Errors,” IJCV, vol. 47, no.1-3, pp. 229-246, 2000.
[Hsieh ,2006] Yi-Zeng Hsieh, “A Stereo-Vision-Based Aid System for the Blind” master thesis on NCU , Taiwan, 2006.
[Iskender, 2005] Iskender Yakin, Ahmet Tolgay and Oguzcan Oguz “Stereo-vision based Obstacle Detection and Swerving” Bilkent University. May 26,2006, Computer Vision. Professor, Operations Research. Class of 2006
[Jenkin, 1994] M. R. M. Jenkin, A. D. Jepson, “Recovering Local Surface Structure through Local Phase Difference Measurements,” CVGIP: Image Understanding, vol. 59, pp. 72-93, 1994.
[Kanade, 1994] T. Kanade and M. Okutomi, 'A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,' Proceedings of the 1991 IEEE International Conference on Robotics and Automation (ICRA '91), vol. 2, pp. 1088-1095, April, 1991 .
[Leanne, 2006] Leanne Matuszyk “Stereo Panoramic Vision For Obstacle Detection” A thesis submitted for the degree of Master of Philosophy at The Australian National University. February 2006.
[Lin, 2005] C. T. Lin, ” Disparity Estimation by Hierarchical Coherence Detection,” master thesis on NTU, Taiwan, 2005.
[Maki,1993] Atsuto Maki, Tomas Uhlin and Jan-Olof Eklundh.”Phase Based Disparity Estimation in Binocular tracking” .Proc. 8th Scandinavian Conference on Image Analysis, pp. 1145--1152, Norwegian Society for Image Processing and Pattern Recognition, May 1993.
[NASA, 2006] http://mars.jpl.nasa.gov
[Sun,2005] Chung-Chi Sun, “A Low-Cost Travel-Aid for the Blind” master thesis on NCU , Taiwan, 2005.
[Sanger, 1988] T. D. Sanger, “Stereo Disparity Computation Using Gabor Filters,” Biological Cybernetics, vol. 59, pp.405-418, 1988.
[Stephen, 1998] Stephen Se,Brady M. “Stereo Vision-based Obstacle Detection for Partially Sighted People”. Asian Conference on Computer Vision(ACCV) 1998[C]. Hong Kong,China,1997,1:152-159
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30034-
dc.description.abstract本論文旨在發展可以應用於自主行動導航的立體視覺技術,目標是以立體攝像機監視路面和偵測障礙物,將路貌的三度空間資訊提供給自主機器人或自主車輛的運動控制系統,達成導航和避碰的目的。立體攝像機指向前下方,使其視野涵蓋被監視的路面,核心問題是如何從左右影像粹取監視範圍內的路貌資訊。本研究發展出分層凝聚量測法將左右影像轉換為視差圖,特點是凝聚法使量測準確、分層法則使相位估測法可以量測大範圍的視差值。路貌偵測系統由兩個機制構成,路面區域探索機制利用色調的差異區隔路面和其它物件,使物件從視差圖中浮現;視差中位數蒐尋架構則在已經去除路面區域的視差圖內,區隔出視差值大於中位數的區塊,其中區塊面積大於雜訊區塊者即被當作障礙物,最後再估算各個障礙物的三度空間位置,做為導航和避碰控制的依據,本文詳述各項技術的細節,並以實驗結果佐證其可用性。zh_TW
dc.description.abstractThis thesis aims at developing techniques of computational stereovision (CSV) for navigation and collision avoidance of autonomous vehicles or mobile robots. The main problem is to implement a CSV system to extract three-dimension information about roadway from stereo images. It is assumed the stereo camera looks obliquely down so that roadway is under its view. Stereo image pairs are captured and transformed sequentially into disparity maps in which roadway and obstacles are detected and located. Other than correlation correspondence method, the hierarchical coherence measurement is proposed to extract disparity maps quickly and densely from stereo image pairs. The coherence design assures precise measurement and the hierarchical design enables the phase-based disparity estimation to measure large disparities. The roadway surveillance system relies on implementing the roadway exploration mechanism and the median search architecture. The roadway exploration mechanism detects roadway pixels by the hue classification. This result is used to mask the disparity map so as to emerge objects out of the roadway. The median search architecture detects an obstacle as the region with disparity values larger than the median value and with size larger than noise patch. The regions attributed to obstacles are then located to generate three-dimension information for guidance and collision avoidance. The detailed design of the roadway surveillance system is presented. Experimental results show the feasibility and accuracy of the proposed design.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:31:54Z (GMT). No. of bitstreams: 1
ntu-96-R94921071-1.pdf: 11223915 bytes, checksum: 27b99a0455a45a6119c156f1d84cf71c (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要 ⅵ
ABSTRACT ⅷ
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Motivation and Contribution 5
1.3 Organization of this thesis 7
Chapter 2 9
Basic Knowledge and Design Methods of Stereovision and Obstacle Detection 9
2.1 Time of fly technique 9
2.2 Binocular Stereovision 11
2.2.1 Disparity 12
2.2.2 Requirements and constraints 13
2.3 Disparity Measurement 14
2.3.1 Correlation-based algorithm 15
2.3.2 Feature-based algorithm 16
2.3.3 Phase-based algorithm 18
2.3.3.1 Disparity measurement by estimating phase difference with Gabor filters 19
2.3.4 Summary of disparity measurement 21
2.3.5 Disparity map and depth map 23
2.4 Obstacle Detection with Stereovision Technique 23
2.4.1 Ground plane obstacle detection method 23
2.4.2 Searching obstacle disparity region method 25
2.4.3 Ground plane subtraction approach method 26
Chapter 3 29
Hierarchical Phase-Shift Coherence Measurement of Disparities 29
3.1 Disparity Measurement by Phase Coherence Detection (PCM) 29
3.1.1 Coherence group and accuracy analysis 33
3.2 Hierarchical Phase Structure Measurement (HPM) 34
3.2.1 Image pyramid 36
3.2.2 Computational effort 38
3.3 Hierarchical Phase-Shift Coherence Measurement (HPCM) 38
3.3.1 Adaptive pixel shift and disparity accumulation of HPCM 40
3.3.2 Summary of HPCM 42
3.4 Numbers of Scales and Wavelengths of Filters 43
3.5 Quality Measurement with Error Criterion of HPCM 45
Chapter 4 49
Obstacle Detection by Median Search Architecture with Roadway Exploration Mechanism 49
4.1 Median Search Architecture on Disparity Map 49
4.2 Roadway Exploration 54
4.2.1 RGB and HSV color space transformation 54
4.2.2 RGB space 55
4.2.3 HSV space 56
4.3 Roadway exploration by hue segmentation 58
4.3.1 Erosion 60
4.3.2 Remove small region of conjoint object pixels 61
4.4 Obstacle detection algorithm 64
Chapter 5 67
Experimental Results 67
5.1 Experimental environment 67
5.2 Experiments 1 68
5.3 Experiments 2 79
5.4 Experiments 3 87
Chapter 6 95
Conclusion 95
References 97
dc.language.isoen
dc.title路貌視差圖之分層凝聚量測法與障礙物偵測法zh_TW
dc.titleObstacle Detection and Hierarchical Coherence Measurement of Roadway Disparity Mapen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱榮輝,許新添
dc.subject.keyword立體視覺,視差,障礙物偵測,避碰,監控,zh_TW
dc.subject.keywordComputational stereovision,disparity,obstacle detection,collision avoidance,surveillance,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2007-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
10.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved