請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30007
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王偉仲 | |
dc.contributor.author | Dai-Ni Hsieh | en |
dc.contributor.author | 謝岱霓 | zh_TW |
dc.date.accessioned | 2021-06-13T01:30:15Z | - |
dc.date.available | 2012-08-16 | |
dc.date.copyright | 2011-08-16 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-02 | |
dc.identifier.citation | [1] Max D. Morris and Toby J. Mitchell. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43(3):381 – 402, 1995.
[2] Kenny Q. Ye, William Li, and Agus Sudjianto. Algorithmic construction of optimal symmetric Latin hypercube designs. Journal of Statistical Planning and Inference, 90(1):145 – 159, 2000. [3] Ruichen Jin, Wei Chen, and Agus Sudjianto. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134(1):268 – 287, 2005. [4] A. Grosso, A.R.M.J.U. Jamali, and M. Locatelli. Finding maximin Latin hypercube designs by Iterated Local Search heuristics. European Journal of Operational Research, 197(2):541 – 547, 2009. [5] Stuart J. Bates, Johann Sienz, and Vassili V. Toropov. Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm. AIAA 2004-2011, pages 1–7. [6] M. Liefvendahl and R. Stocki. A study on algorithms for optimization of Latin hypercubes. Journal of Statistical Planning and Inference, 136(9):3231 – 3247, 2006. [7] Edwin R. van Dam, Bart Husslage, Dick den Hertog, and Hans Melissen. Maximin Latin Hypercube Designs in Two Dimensions. Operations Re- search, 55(1):158–169, 2007. [8] J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume 4, pages 1942–1948. Piscataway, NJ: IEEE, 1995. [9] D. Bratton and J. Kennedy. Defining a standard for particle swarm opti- mization. In IEEE Swarm Intelligence Symposium, 2007. SIS 2007, pages 120–127, Piscataway, N.J., 2007. IEEE. [10] Andries P. Engelbrecht. Fundamentals of computational swarm intelligence. John Wiley & Sons, Hoboken, NJ, USA, 2006. [11] Yukai Hung and Weichung Wang. Accelerating parallel particle swarm op- timization via GPU. Optimization Methods and Software. [12] Edwin R. van Dam, Gijs Rennen, and Bart Husslage. Bounds for maximin Latin hypercube designs. Operations Research, 57(3):595–608, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30007 | - |
dc.description.abstract | Due to the expensive cost of many computer and physical experiments, it is important to carefully choose a small number of experimental points uniformly spreading out the experimental domain in order to obtain most information from these few runs. Although space-filling Latin hypercube designs (LHDs) are popu- lar ones that meet the need, LHDs need to be optimized to have the space-filling property. As the number of design points or variables becomes large, the to- tal number of LHDs grows exponentially. The huge number of feasible points makes this a difficult discrete optimization problem. In order to search the opti- mal LHDs efficiently, we propose a population based algorithm which is adapted from the standard particle swarm optimization (PSO) and customized for LHD. Moreover, we accelerate the adapted PSO for LHD (LaPSO) via graphic process- ing unit (GPU). According to the examined cases, the proposed LaPSO is more stable compared to other two methods and capable of improving some known results. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:30:15Z (GMT). No. of bitstreams: 1 ntu-100-R97221050-1.pdf: 961491 bytes, checksum: 25373cc9fbfd6366a610a7b227b77028 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Particle swarm optimization 4 3 LaPSO 6 4 Numerical Results 11 4.1 Behaviors of LaPSO 13 4.2 Comparison with GA 16 4.3 Comparison with ESE 18 4.4 Best extended maximin results 18 5 Conclusion 22 References 22 Appendix 24 | |
dc.language.iso | en | |
dc.title | 利用粒子群演算法與圖形處理器尋找最佳拉丁超立方設計 | zh_TW |
dc.title | Optimizing Latin Hypercube Designs by Particle Swarm with GPU Acceleration | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳宏,陳瑞彬 | |
dc.subject.keyword | 拉丁超立方設計,粒子群演算法,圖形處理器, | zh_TW |
dc.subject.keyword | Latin hypercube design (LHD),particle swarm optimization (PSO),graphic processing unit (GPU), | en |
dc.relation.page | 25 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 938.96 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。