Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30007
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲
dc.contributor.authorDai-Ni Hsiehen
dc.contributor.author謝岱霓zh_TW
dc.date.accessioned2021-06-13T01:30:15Z-
dc.date.available2012-08-16
dc.date.copyright2011-08-16
dc.date.issued2011
dc.date.submitted2011-08-02
dc.identifier.citation[1] Max D. Morris and Toby J. Mitchell. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43(3):381 – 402, 1995.
[2] Kenny Q. Ye, William Li, and Agus Sudjianto. Algorithmic construction of optimal symmetric Latin hypercube designs. Journal of Statistical Planning and Inference, 90(1):145 – 159, 2000.
[3] Ruichen Jin, Wei Chen, and Agus Sudjianto. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134(1):268 – 287, 2005.
[4] A. Grosso, A.R.M.J.U. Jamali, and M. Locatelli. Finding maximin Latin hypercube designs by Iterated Local Search heuristics. European Journal of Operational Research, 197(2):541 – 547, 2009.
[5] Stuart J. Bates, Johann Sienz, and Vassili V. Toropov. Formulation of the optimal Latin hypercube design of experiments using a permutation genetic algorithm. AIAA 2004-2011, pages 1–7.
[6] M. Liefvendahl and R. Stocki. A study on algorithms for optimization of Latin hypercubes. Journal of Statistical Planning and Inference, 136(9):3231 – 3247, 2006.
[7] Edwin R. van Dam, Bart Husslage, Dick den Hertog, and Hans Melissen. Maximin Latin Hypercube Designs in Two Dimensions. Operations Re- search, 55(1):158–169, 2007.
[8] J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume 4, pages 1942–1948. Piscataway, NJ: IEEE, 1995.
[9] D. Bratton and J. Kennedy. Defining a standard for particle swarm opti- mization. In IEEE Swarm Intelligence Symposium, 2007. SIS 2007, pages 120–127, Piscataway, N.J., 2007. IEEE.
[10] Andries P. Engelbrecht. Fundamentals of computational swarm intelligence. John Wiley & Sons, Hoboken, NJ, USA, 2006.
[11] Yukai Hung and Weichung Wang. Accelerating parallel particle swarm op- timization via GPU. Optimization Methods and Software.
[12] Edwin R. van Dam, Gijs Rennen, and Bart Husslage. Bounds for maximin Latin hypercube designs. Operations Research, 57(3):595–608, 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/30007-
dc.description.abstractDue to the expensive cost of many computer and physical experiments, it is important to carefully choose a small number of experimental points uniformly spreading out the experimental domain in order to obtain most information from these few runs. Although space-filling Latin hypercube designs (LHDs) are popu- lar ones that meet the need, LHDs need to be optimized to have the space-filling property. As the number of design points or variables becomes large, the to- tal number of LHDs grows exponentially. The huge number of feasible points makes this a difficult discrete optimization problem. In order to search the opti- mal LHDs efficiently, we propose a population based algorithm which is adapted from the standard particle swarm optimization (PSO) and customized for LHD. Moreover, we accelerate the adapted PSO for LHD (LaPSO) via graphic process- ing unit (GPU). According to the examined cases, the proposed LaPSO is more stable compared to other two methods and capable of improving some known results.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:30:15Z (GMT). No. of bitstreams: 1
ntu-100-R97221050-1.pdf: 961491 bytes, checksum: 25373cc9fbfd6366a610a7b227b77028 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
2 Particle swarm optimization 4
3 LaPSO 6
4 Numerical Results 11
4.1 Behaviors of LaPSO 13
4.2 Comparison with GA 16
4.3 Comparison with ESE 18
4.4 Best extended maximin results 18
5 Conclusion 22
References 22
Appendix 24
dc.language.isoen
dc.title利用粒子群演算法與圖形處理器尋找最佳拉丁超立方設計zh_TW
dc.titleOptimizing Latin Hypercube Designs by Particle Swarm with GPU Accelerationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宏,陳瑞彬
dc.subject.keyword拉丁超立方設計,粒子群演算法,圖形處理器,zh_TW
dc.subject.keywordLatin hypercube design (LHD),particle swarm optimization (PSO),graphic processing unit (GPU),en
dc.relation.page25
dc.rights.note有償授權
dc.date.accepted2011-08-03
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
938.96 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved