請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29975完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Yen-Yun Yu | en |
| dc.contributor.author | 余雁雲 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:28:22Z | - |
| dc.date.available | 2008-07-24 | |
| dc.date.copyright | 2007-07-24 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-13 | |
| dc.identifier.citation | 1 Hedin M, Polhagen L. Follow-up study of periradicular bone condensation. Scand J Dent Res 1971; 79:436-40.
2 Geraets WG, Van der Stelt PF, Netelenbos CJ, Elders PJ. A new method for automatic recognition of the radiographic trabecular pattern. J Bone Miner Res 1990; 5:227-33. 3 Cortet B, Dubois P, Boutry N, Bourel P, Cotton A, Marchandise X. Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 1999; 9:410-9. 4 Kumasaka S, Kashima I. Initial investigation of mathematical morphology for the digital extraction of the skeletal characteristics of trabecular bone. Dentomaxillofac Radiol 1997; 26:161-8. 5 Kiyohara S, Sakurai T, Kashima I. Early detection of radiation-induced structural changes in rat trabecular bone. Dentomaxillofac Radiol 2003; 32:30-8. 6 Nakamura K, Matsubara M, Asai H, Koyama A, Fujikawa T, Kashima I. Mathematical morphology for extraction of bone trabecular pattern-preliminary investigation of quantitative analysis using the star volume. J Jpn Soc Bone Morphom 1999; 9:45-51. 7 Ikuta A, Kumasaka S, Kashima I. Quantitative analysis using the star volume method applied to skeleton patterns extracted with a morphological filter. J Bone Miner Metab 2000; 18:271-7. 8 Parkinson IH, Fazzalari NL. Methodological principles for fractal analysis of trabecular bone. J Microsc 2000; 198:134-42. 9 Majumdar S, Weinstein RS, Prasad RR. Application of fractal geometry techniques to the study of trabecular bone. Med Phys 1993; 20:1611-9. 10 Haidekker MA, Andresen R, Evertsz CJ, Banzer D, Peitgen HO. Assessing the degree of osteoporosis in the axial skeleton using the dependence of the fractal dimension on the grey level threshold. Br J Radiol 1997; 70:586-93. 11 Cross SS. Fractals in pathology. J Pathol 1997; 182:1-8. 12 Mainieri R. On the equality of Hausdorff and box counting dimensions. Chaos 1993; 3:119-125. 13 Chen SK, Oviir T, Lin CH, Leu LJ, Cho BH, Hollender L. Digital imaging analysis with mathematical morphology and fractal dimension for evaluation of periapical lesions following endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 100:467-72. 14 Chen SK, Hollender L. Digitizing of radiographs with a flatbed scanner. J Dent 1995; 23:205-8. 15 Choël* L, Last D, Duboeuf F, Seurin MJ, Lissac M, Briguet A, Guillot G. Trabecular alveolar bone microarchitecture in the human mandible using high resolution magnetic resonance imaging. Dentomaxillofacial Radiology 2004; 33:177-82. 16 Chung HW, Chu CC, Underweiser M, Wehrli FW. On the fractal nature of trabecular structure. Medical Physics 1994; 21:1535-540. 17 Foroutan-pour K. Dutilleul P, Smith D.L. Advances in the implementation of the box-counting method of fractal dimension estimation. Applied Mathematics and Computation 1999; 105:195-210. 18 Benn DK. Limitations of the digital image subtraction technique in assessing alveolar bone crest changes due to misalignment errors during image capture. Dentomaxillofac Radiol 1990; 19:97-104. 19 Chen SK, Hollender L. Detector response and exposure control of the RadioVisioGraphy system (RVG 32000 ZHR). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1993; 76:104-11. 20 Swindell W, Webb S. X-ray transmission computed tomography. In: Weeb S, editor. The physics of medical imaging. Bristol, UK: IOP; 1988. p. 98-127. 21 Serra J. Image Analysis and Mathematical Morphology. Academic Press; 1982. 22 Mandelbrot BB. Fractal Geometry of Nature. W.H.Freeman and Co. New York 1982. 23 Hollander M, Wolf DA. Nonparametric Statistical Methods. John Wily & Sons. New York; 1973. 24 Cohen J. A coefficient of agreement for nominal scales. Educational & Psychological Measurement 1960; 20:37-46. 25 Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-74. 26 Lin CH, Leu LJ, Yu YY, Chen CM, Chen SK. The effect of projection geometry on detecting simulated changes of trabecular bone by fractal dimensions and subtraction . 57th AAOMR 2006. 27 L Jolley1, S Majumdar2 and S Kapila*. Technical factors in fractal analysis of periapical radiographs. Dentomaxillofac Radiol 2006; 35: 393-7. 28 林啟豪. 數學形態學及碎形維度於X光醫學影像分析. 國立台灣大學土木工程學研究所博士論文 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29975 | - |
| dc.description.abstract | 研究目的:
本研究目的是運用碎形將根管治療後反應性骨之變化給予數值化觀察其變化;並假說成功根管治療過後反應性骨碎形維度值會比治療前下降。 研究設計: 首先從19位患者治療前和治療後口腔X光數位元影像取出兩組ROI(Region of Interesting),再運用數學型態法去擷取牙根尖周圍影像反應性骨之骨小樑形態,搭配方格記數法去估算被擷取出小樑骨型態的碎形維度值。 研究結果: 第一組ROIs中19位患者中17位在成功根管治療6個月後牙根尖周圍反應性骨碎形維度值會比治療前下降(P=0.005);第二組ROIs中19位患者中13位在成功根管治療6個月後牙根尖周圍反應性骨碎形維度值會比治療前下降(P=0.048)。兩組ROIs做Kappa統計量得到к=0.406和P=0.028呈現本研究方法的再現性。 總結: 鮮少研究用數值去描述反應性骨。本研究使用數學形態學與碎形維度去呈現反應性骨於根管治療前後的變化型態,結果也證實本方法的可靠性。但本研究也只是一個開端,反應性骨的真實存在形狀與治療後康復時間仍需要進一步的研究。 | zh_TW |
| dc.description.abstract | Objective. Mathematical morphology and box counting were used to extract trabecular pattern and to evaluate changes of reactive bone following root canal treatment.
Study Design. Periapical radiographs were digitized and processed with mathematical morphology operations known as skeletonization. The trabecular patterns resulting from this skeletonization process were further analyzed with fractal dimension analysis using the box counting method. Two groups of Ragions of Interests (ROI) were selected from 19 patients for the analysis. Results. In different group, seventeen and thirteen patients showed decreased fractal dimension in the reactive bone region after clinically successful root canal treatment (RCT). Significant changes in fractal dimension, calculated by mathematical morphology operations combined with box-counting, could be noted six months after RCT (P < .05). Kappa statistic indicated significant reproducibility between the two groups of ROIs. Conclusions. Mathematical morphology combined with box counting could be a reliable and objective method for studying changes in periapical bone structure after endodontic treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:28:22Z (GMT). No. of bitstreams: 1 ntu-96-R94548027-1.pdf: 4677077 bytes, checksum: a9f134c4c7fb01a48f127a8446d66d71 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 第一章 序論 1
1.1 研究背景與動機 2 1.2 研究設計 4 1.3 研究內容與結果 6 第二章 數學形態學 7 2.1 數學形態學介紹 7 2.1.1 集合理論 7 2.1.2 二元影像的邏輯運算 8 2.1.3 二元影像的基本運算 9 2.1.4灰階影像的基本運算 11 2.2 數學形態學-骨架演算法 15 2.2.1骨架演算法-二元集合的運用 15 2.2.2骨架演算法-灰階影像的運用 17 第三章 碎形 19 3.1碎形維度特性 19 3.2豪斯德夫維度(Hausdorff Dimension) 21 3.3定率碎形(Deterministic Fractal) 22 3.3.1康托爾集合(Cantor Set) 22 3.3.2科赫曲線(Koch Curve) 23 3.3.3謝爾賓斯基三角(Serpinski Trangle) 24 3.4估計碎形的演算法 25 3.4.1方格記數法(Box-Counting) 25 3.4.2 其他 28 第四章 根管治療後療效之評估 30 4.1根管治療(Root Canal Treatment)與骨小樑(Trabecular Bone) 30 4.2研究工具與方法(Material and Method) 30 4.2.1 ROI(Region of Interesting)的選取 31 4.2.2分析工具 32 4.2.3 Wilcoxon-Sight Rank Test 33 4.3結果 34 第五章 反應性骨 36 5.1 反應性骨(Reactive Bone Fofmation) 36 5.2研究工具與方法(Material and Method) 37 5.2.1 ROI(Region of Interesting)的選取 37 5.2.2 統計方法 39 5.3結果 40 第六章 討論 49 Reference 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數學形態學 | zh_TW |
| dc.subject | 方格記數法 | zh_TW |
| dc.subject | 根管治療 | zh_TW |
| dc.subject | 骨小樑 | zh_TW |
| dc.subject | 反應性骨 | zh_TW |
| dc.subject | Root Canal Treatment | en |
| dc.subject | Reactive Bone | en |
| dc.subject | Trabecular Bone | en |
| dc.subject | Mathematical Morphology | en |
| dc.subject | Box-Counting | en |
| dc.title | 牙根尖周圍反應性骨碎形維度值於根管治療前後變化之研究 | zh_TW |
| dc.title | Fractal Dimension of Periapical Reactive Bone in Response to Root Canal Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫永年,詹寶珠,許志宇 | |
| dc.subject.keyword | 數學形態學,方格記數法,根管治療,骨小樑,反應性骨, | zh_TW |
| dc.subject.keyword | Mathematical Morphology,Box-Counting,Root Canal Treatment,Trabecular Bone,Reactive Bone, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-17 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
