Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰
dc.contributor.authorMing-Tsung Leeen
dc.contributor.author李旻璁zh_TW
dc.date.accessioned2021-06-13T01:26:01Z-
dc.date.available2007-07-23
dc.date.copyright2007-07-23
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citation1. Prausnitz, J.M. and F.W. Tavares, Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. Aiche Journal, 2004. 50(4): p. 739-761.
2. Sandler, S.I., Chemical and engineering thermodynamics. 3 rd. ed. 1999, New york: John Wiley & Sons, Inc.
3. Peng, D. and D.B. Robinson, New 2-Constant Equation Of State. Industrial & Engineering Chemistry Fundamentals, 1976. 15(1): p. 59-64.
4. Soave, G., Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical Engineering Science, 1972. 27(6): p. 1197-&.
5. Renon, H. and J.M. Prausnitz, Local Compositions In Thermodynamic Excess Functions For Liquid Mixtures. Aiche Journal, 1968. 14(1): p. 135.
6. Wilson, G.M., Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 1964. 86: p. 127-130.
7. Abrams, D.S. and J.M. Prausnitz, Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE Journal, 1975. 21(1): p. 116-128.
8. Adachi, Y. and H. Sugie, A New Mixing Rule Modified Conventional Mixing Rule. Fluid Phase Equilibria, 1986. 28(2): p. 103-118.
9. Boukouvalas, C., et al., Prediction of Vapor-Liquid-Equilibrium with the Lcvm Model - a Linear Combination of the Vidal and Michelsen Mixing Rules Coupled with the Original Unifac and the T-Mpr Equation of State. Fluid Phase Equilibria, 1994. 92: p. 75-106.
10. Dahl S, M.M., High-Pressure Vapor-Liquid-Equilibrium with a UNIFAC-Based Equation of State. AIChE JOURNAL 1990 36 (12): p. 1829-1836.
11. Holderbaum, T., A. Utzig, and J. Gmehling, Vapor-Liquid-Equilibria for the System Butane Ethanol at 25.3, 50.6 and 72.5-Degrees-C. Fluid Phase Equilibria, 1991. 63(1-2): p. 219-226.
12. Huron, M.J. and J. Vidal, New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid-Equilibria of Strongly Non-Ideal Mixtures. Fluid Phase Equilibria, 1979. 3(4): p. 255-271.
13. Luedecke, D. and J.M. Prausnitz, Phase-Equilibria for Strongly Nonideal Mixtures from an Equation of State with Density-Dependent Mixing Rules. Fluid Phase Equilibria, 1985. 22(1): p. 1-19.
14. Mathias, P.M., H.C. Klotz, and J.M. Prausnitz, Equation-of-State Mixing Rules for Multicomponent Mixtures - the Problem of Invariance. Fluid Phase Equilibria, 1991. 67: p. 31-44.
15. Michelsen, M.L., A Modified Huron-Vidal Mixing Rule for Cubic Equations of State. Fluid Phase Equilibria, 1990. 60(1-2): p. 213-219.
16. Mollerup, J., A Note on the Derivation of Mixing Rules from Excess Gibbs Energy Models. Fluid Phase Equilibria, 1986. 25(3): p. 323-327.
17. Orbey, H. and S.I. Sandler, On the Combination of Equation of State and Excess Free-Energy Models. Fluid Phase Equilibria, 1995. 111(1): p. 53-70.
18. Panagiotopoulos, A.Z. and R.C. Reid, Multiphase High-Pressure Equilibria in Ternary Aqueous Systems. Fluid Phase Equilibria, 1986. 29: p. 525-534.
19. Panagiotopoulos, A.Z. and R.C. Reid, New Mixing Rule for Cubic Equations of State for Highly Polar, Asymmetric Systems. Acs Symposium Series, 1986. 300: p. 571-582.
20. Sandoval, R., G. Wilczekvera, and J.H. Vera, Prediction of Ternary Vapor-Liquid-Equilibria with the Prsv Equation of State. Fluid Phase Equilibria, 1989. 52: p. 119-126.
21. Schwartzentruber, J. and H. Renon, Equations of State - How to Reconcile Flexible Mixing Rules, the Virial-Coefficient Constraint and the Michelsen-Kistenmacher Syndrome for Multicomponent Systems. Fluid Phase Equilibria, 1991. 67: p. 99-110.
22. Wong, D.S.H. and S.I. Sandler, A THEORETICALLY CORRECT MIXING RULE FOR CUBIC EQUATIONS OF STATE. Aiche Journal, 1992. 38(5): p. 671-680.
23. Klamt, A., Conductor-Like Screening Model for Real Solvents - a New Approach to the Quantitative Calculation of Solvation Phenomena. Journal of Physical Chemistry, 1995. 99(7): p. 2224-2235.
24. Lin, S.T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & Engineering Chemistry Research, 2002. 41(5): p. 899-913.
25. Escobedo-Alvarado, G.N., S.I. Sandler, and A.M. Scurto, Modeling of solid-supercritical fluid phase equilibria with a cubic equation of state-G(ex) model. Journal Of Supercritical Fluids, 2001. 21(2): p. 123-134.
26. Shiflett, M.B. and S.I. Sandler, Modeling fluorocarbon vapor-liquid equilibria using the Wong-Sandler model. Fluid Phase Equilibria, 1998. 147(1-2): p. 145-162.
27. Constantinescu, D., A. Klamt, and D. Geana, Vapor-liquid equilibrium prediction at high pressures using activity coefficients at infinite dilution from COSMO-type methods. Fluid Phase Equilibria, 2005. 231(2): p. 231-238.
28. Shimoyama, Y., et al., Prediction of phase equilibria for mixtures containing water, hydrocarbons and alcohols at high temperatures and pressures by cubic equation of state with G(E) type mixing rule based on COSMO-RS. Fluid Phase Equilibria, 2006. 243(1-2): p. 183-192.
29. Orbey, H. and S.I. Sandler, A comparison of Huron-Vidal type mixing rules of mixtures of compounds with large size differences, and a new mixing rule. Fluid Phase Equilibria, 1997. 132(1-2): p. 1-14.
30. DMol3, Cerius2. 1999, Molecular Simulations Inc.: San Diego.
31. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/5. 1977 and onward.
32. Ohe, S., Vapor-Liquid Equilibrium data at high pressure. 1990: Tokyo: Kodansha; Amsterdam; New York: Elsevier 26.
33. Matschke, D.E. and G. Thodos, Vapor-Liquid Equilibria for Ethane-Propane System. Journal of Chemical and Engineering Data, 1962. 7(2): p. 232-234.
34. Kohn, J.S.a.J.P., Multiphase and Volumetruc Equilibria of Methane-n-Hexane Binary System at Temperature between -1100C and 1500C. Journal of Chemical and Engineering Data, 1962. 7(1): p. 3-8.
35. Marteau, P., et al., Experimental determination of the phase behavior of binary mixtures: Methane-hexane and methane-benzene. Fluid Phase Equilibria, 1997. 129(1-2): p. 285-305.
36. Kim, Y., W. Bae, and H. Kim, Isothermal vapor-liquid equilibria for the n-pentane+1-butanol and n-pentane+2-butanol systems near the critical cegion of the mixtures. Journal of Chemical and Engineering Data, 2005. 50(5): p. 1520-1524.
37. Seo, J., J. Lee, and H. Kim, Isothermal vapor-liquid equilibria for ethanol and n-pentane system at the near critical region. Fluid Phase Equilibria, 2000. 172(2): p. 211-219.
38. Ohe, S., Vapor-Liquid Equilibrium data. 1989: Tokyo: Kodansha; Amsterdam; New York: Elsevier 253.
39. Barr-David, F. and B.F. Dodge, Vapor-Liquid Equilibrium at High Pressures: The Systems Ethanol-Water and 2-propanol-Water. Journal of Chemical and Engineering Data, 1959. 4(2): p. 107-121.
40. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/6a. 1977 and onward.
41. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/1. 1977 and onward.
42. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/2a. 1977 and onward.
43. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/2e. 1977 and onward.
44. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/7. 1977 and onward.
45. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/6b. 1977 and onward.
46. Gmehling, J.G., Vapor-liquid equilibrium data collection. Dechema: Frankfurt/Main. Vol. I/2d. 1977 and onward.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29937-
dc.description.abstract本研究的主要透過結合Peng-Robinson狀態方程式以及COSMO-SAC液體模型,預測混合物的液氣相平衡。基於量子力學的計算,COSMO-SAC模型本身已能準確的預測任何物質在遠離臨界點處,混合物的液氣相平衡。我們發現,將COSMO-SAC模型與Peng-Robinson狀態方程式,透過諸如Wong-Sandler (WS)或是一次修正Huron-Vidal (modified 1st order Huron-Vidal, MHV1)這些以過量吉布氏自由能為基準的混合律結合,可以大幅增加預測混合物液氣相平衡的能力。我們已測試包含烷類、醇類、酮類、水,甚至芳香烴等物質間所構成的兩成份系統,預測的範圍廣佈自壓力一大氣壓以下到將近兩百大氣壓,溫度從攝氏約零下一百度到攝氏五百五十度。
雖然相較於MHV1,WS混合律遵守統計力學中要求第二維禮係數與組成的二次關係,但是PR+WS+COSMOSAC的表現(壓力誤差6.79%,氣相成份誤差2.20%)卻不如PR+MHV1+COSMOSAC(壓力誤差4.00%,氣相成份誤差1.51%),而此非預期的缺失已由研究結果發現是源自WS混合律的假設。我們發現PR+WS+COSMOSAC的準確性可以經由兩種管道大幅的提升:其一,省略在COSMO-SAC模型中的Stavermann-Guggenheim combinatorial項,而此種模型註記為PR+WS+COSMOSACres,透過此種改良可將壓力誤差下降25%;其二,重新設定WS混合律中的參數值,此種模型則註記為PR+WS*+COSMOSAC,透過此種改良更可將壓力誤差下降33%。
總而言之,由本研究結果顯示,PR+MHV1+COSMOSAC、PR+WS+COSMOSACres,以及PR+WS*+COSMOSAC皆為可信賴的液氣相平衡之預測模型。
zh_TW
dc.description.abstractIn this work we examined the prediction of vapor-liquid equilibria (VLE) of mixtures from the combined use of the Peng-Robinson equation of state (PR EOS) and the COSMO-SAC liquid activity coefficient model (LM). Based on the results of quantum mechanical calculations, it has been shown that the COSMO-SAC model is capable of predicting VLE of mixtures away from the critical point of any constituent component. With excess Gibbs free energy based mixing rules, such as the Wong-Sandler (WS) mixing rule and the modified Huron-Vidal (MHV1) mixing rule, we found that the combined model is capable of prediction the VLE of binary mixtures, including alkane and alkane, alkane and alcohol, alkane and ketone, alcohol and water, and other highly nonideal systems including aromatic compounds over a wide range of temperature (183.15K~623.15K) and pressure (0.1MPa~19MPa). Although the WS mixing rule ensures a correct quadratic composition dependence in the second virial coefficient, the performance of PR+WS+COSMOSAC [6.79% error in P and 2.20% error in y] is found to be inferior to that of PR+MHV1+COSMOSAC [4.00% error in P and 1.51% error in y]. The unexpected low accuracy with PR+WS+COSMOSAC model is found to be a result of the liquid model used and the assumptions made in the WS mixing rule. We found that the accuracy can be greatly improved either by neglecting Stavermann-Guggenheim combinatorial term in the COSMO-SAC model or by reparameterize the global parameters in WS mixing rule. The average error in the pressure from the latter approaches, denoted as PR+WS+COSMOSACres and PR+WS*+COSMOSAC, is lowered by more than 25% and 33% compared to that from the PR+WS+COSMOSAC. Our results show that all the above three methods: PR+WS+COSMOSACres, PR+WS*+COSMOSAC and PR+MHV1+COSMOSAC are all promising approaches for mixture VLE predictions over a large range of conditions.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:26:01Z (GMT). No. of bitstreams: 1
ntu-96-R94524062-1.pdf: 2075474 bytes, checksum: 5429d34a70ae313f240beb46c83f34ff (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 ………………………………………………………………….Ⅰ
誌謝 ………………………………………………………………………………….Ⅱ
中文摘要 …………………………………………………………………………….IV
Abstract ……………………………………………………………………………..….V
Index of Tables………………………………………………………………...……….VII
Index of Figures ………………………..……………………………………….……VIII
Ch. 1 Introduction ……………………………………………………………………….1
Ch. 2 Theory …………………………………………………………………………….4
2.1 phase equilibrium modeling ……………………………………………...……4
2.2 PR EOS …………………………………………………………………...……4
2.3 mixing rules ……………………………………………………………..……..5
2.3.1 VDW mixing rule ………………………………………………..……..5
2.3.2 HV and MHV1 mixing rules ……………………………………..…….6
2.3.3 WS and WS* mixing rules …………………………………………….9
2.4 COSMOSAC and COSMOSACres models …………………………………...12
Ch. 3 Computation methods ………………………………………………………..… 15
3.1 quantum mechanical part …………………………………………...………...15
3.2 phase equilibrium part ……………………………………………...………...15
Ch.4 Results and discussions …………………………………………………………..19
4.1 PR+MHV1+COSMOSAC vs. PR+WS+COSMOSAC ……………..………..19
4.2 PR+WS+COSMOSACres and PR+WS*+COSMOSAC …………….………..20
Ch. 5 Conclusions ……………………………………………………………………...39
References ……………………………………………………………………………..40
dc.language.isoen
dc.title以狀態方程式結合COSMO-SAC模型預測混合物之液氣相平衡zh_TW
dc.titlePrediction of Mixture Vapor-Liquid Equilibrium from the Combined Use of Peng-Robinson Equation of State and COSMO-SAC Activity Coefficient Modelen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平,李弘智
dc.subject.keywordPeng-Robinson 狀態方程式,COSMO-SAC 模型,Wong-Sandler 混合律,液氣相平衡的預測,zh_TW
dc.subject.keywordPeng-Robinson equation of state,COSMO-SAC model,Wong-Sandler mixing rule,vapor-liquid equilibrium prediction,en
dc.relation.page44
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved