請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29925完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝 | |
| dc.contributor.author | Chun-Jen Wu | en |
| dc.contributor.author | 吳俊人 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:25:16Z | - |
| dc.date.available | 2010-07-20 | |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-17 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29925 | - |
| dc.description.abstract | 雖然氧化鐵在現今的研究中,為生物醫學最普遍應用的磁性奈米粒子,不過因為石墨包鐵(GEI)奈米磁性粒子有強大的磁性,所以為有潛力的新材料。為了增加粒子對癌症細胞貼附的專一性和效率,聚乙二醇(PEG)和葉酸(FA)被接枝在石墨包鐵奈米粒子上面。 FTIR、UV和TEM影像的結果,可以顯現合成的PEG-FA分子可以成功地接枝在GEI奈米粒子的表面上。而對於已經接枝上的奈米粒子(GEI-PEG-FA)可以在水中分散的優異行為,在Seztasier的試驗可以被證實。而在體外(in vitro)對GEI-PEG-FA奈米粒子所做的毒性測試以LDH和WST-1測試,由LDH 測試可以證實GEI-PEG-FA奈米粒子的毒性是相當低的,並且由WST-1測試可以證實GEI-PEG-FA奈米粒子對細胞增生有些微的影響。除此之外,藉由鐵含量的測定,可以知道細胞表面有許多葉酸接受器的HeLa細胞能夠攝入比GEI奈米粒子更多的GEI-PEG-FA奈米粒子。而由穿透式電子顯微鏡的照片所見,HeLa細胞可以藉由內吞作用,攝入GEI-PEG-FA奈米粒子。 | zh_TW |
| dc.description.abstract | Although iron oxide is the most popular magnetic nanoparticle for biomedical applications in the present studies, graphite-encapsulated iron (GEI) magnetic nanoparticle is a novel and potential material owing to its powerful magnetic properties. In order to enhance the specific and efficient targeting into cancer cells, polyethylene glycol (PEG) and folic acid (FA) were immobilized on the GEI nanoparticles. FTIR, UV and TEM images results indicated that the synthesized PEG-FA complexes were successfully conjugated on the surface of GEI nanoparticles. The in vitro experiments for cytotoxicity of GEI-PEG-FA magnetic nanoparticles were performed by LDH and WST-1. The relative low cytotoxicity of GEI-PEG-FA nanoparticles was examined by LDH, and the WST-1 showed cell proliferation was slightly affected by GEI-PEG-FA nanoparticles. By iron determination, HeLa cells with overexpressed folate receptors on cell membranes could uptake more developed GEI-PEG-FA nanoparticles than GEI nanoparticles. The HeLa cells uptake GEI-PEG-FA nanoparticles via endocytosis can be seen from TEM images. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:25:16Z (GMT). No. of bitstreams: 1 ntu-96-R94548003-1.pdf: 4780654 bytes, checksum: 7ae8d98c823b252f4351a143eb4b0600 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter.................................I
List of figures........................IV List of tables.......................VIII Chapter 1 .Introduction............................1 1.1 Prologue............................1 1.2 Cancer..............................3 Definition of cancer.................3 1.3 Cancer therapy......................5 Surgery..............................5 Radiation............................6 Chemotherapy.........................7 Immunotherapy........................9 Gene therapy........................10 Hyperthermia........................11 1.4 Comparisons of cancer therapies....13 1.5 Mechanism of hyperthermia..........15 1.6 Classification of hyperthermia by heating method.....................19 1.7 Hyperthermia applied by magnetic methods............................20 1.8 Drug delivery system for hyperthermia.......................25 1.9 Purpose of study...................26 Chapter 2 Basic theory.................27 2.1 Magnetism 2.1.1 Magnetic moments and electrons...27 2.1.2 Classification of magnetism......30 2.1.3 Properties of magnetic materials........................36 2.1.4 Heat origins of magnetic hyperthermia.....................44 2.2 Magnetic nanoparticles for biomedical applications 2.2.1 Particle size....................46 2.2.2 Biomedical applications of magnetic particles...............48 2.3 Materials and surface modification 2.3.1 Graphite-encapsulated iron (GEI) nanoaprticles....................50 2.3.2 Cytotoxicity of iron and graphite.........................52 2.3.4 Grafting PEG and folic acid on surface of particles.............54 2.3.5 Surface modification of GEI nanoparticles....................56 Chapter 3 Materials and Experiments.....59 3.1 Experiment equipment................59 3.2 Reagents............................60 3.3 Analysis of GEI nanoparticles.......62 Acquirement of GEI nanoparticles......62 XRD...................................63 SEM and EDS...........................64 SQUID.................................65 TEM...................................66 3.4 Surface modification................68 Procedures of conjugation.............68 Analysis of surface modification......72 FTIR..................................72 UV-Vis spectrophotometer..............73 TEM...................................74 3.5 Biocompatibility....................75 LDH...................................75 WST-1.................................77 3.6 Cell uptake.........................79 Iron determination.....................79 TEM....................................80 Chapter 4 Results and Discussions.........82 4.1 Analysis of GEI nanoparticles.........82 XRD.....................................82 SEM and EDS.............................84 SQUID...................................86 TEM.....................................89 4.2 Identification of surface modification..........................91 FTIR....................................91 UV-Vis spectrophotometer................93 TEM.....................................95 4.3 Cytotoxicity..........................97 LDH.....................................97 WST-1...................................98 4.4 Cell uptake..........................100 Iron determination.....................100 TEM....................................102 Chapter 5 Conclusions....................105 References...............................106 | |
| dc.language.iso | en | |
| dc.subject | 細胞攝入 | zh_TW |
| dc.subject | 高溫腫瘤熱治 | zh_TW |
| dc.subject | 葉酸 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 磁性奈米粒子 | zh_TW |
| dc.subject | 核磁共振影像 | zh_TW |
| dc.subject | MRI | en |
| dc.subject | magnetic nanoparticles | en |
| dc.subject | hyperthermia | en |
| dc.subject | cell uptake | en |
| dc.subject | folic acid | en |
| dc.subject | PEG | en |
| dc.title | 利用聚乙二醇和葉酸接枝於石墨包覆鐵磁性奈米粒子做癌症之熱治療 | zh_TW |
| dc.title | Immobilization of PEG and Folic Acid on the Surface of Graphite-Encapsulated Iron (GEI) Magnetic Nanoparticles as Thermoseed for Cancer Hyperthermia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王盈錦,顏秀崗,林順富,拉斯克 斯托賓斯基(Leszek Stobinski) | |
| dc.subject.keyword | 磁性奈米粒子,聚乙二醇,葉酸,細胞攝入,高溫腫瘤熱治,核磁共振影像, | zh_TW |
| dc.subject.keyword | magnetic nanoparticles,PEG,folic acid,cell uptake,hyperthermia,MRI, | en |
| dc.relation.page | 123 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
