請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29891完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周子賓(Tze-Bin, Chou) | |
| dc.contributor.author | Hsiao-Mei Taso | en |
| dc.contributor.author | 曹筱玫 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:23:33Z | - |
| dc.date.available | 2007-07-20 | |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-16 | |
| dc.identifier.citation | Reference
Akhurst,R.J. (2004). TGF beta signaling in health and disease. Nat. Genet. 36, 790-792. Alazzouzi,H., Alhopuro,P., Salovaara,R., Sammalkorpi,H., Jarvinen,H., Mecklin,J.P., Hemminki,A., Schwartz S Jr, Aaltonen,L.A., and Arango,D. (2005). SMAD4 as a prognostic marker in colorectal cancer. Clin. Cancer Res. 11, 2606-2611. Alhopuro,P., Alazzouzi,H., Sammalkorpi,H., Davalos,V., Salovaara,R., Hemminki,A., Jarvinen,H., Mecklin,J.P., Schwartz S Jr, Aaltonen,L.A., and Arango,D. (2005). SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin. Cancer Res. 11, 6311-6316. Ando,T., Sugai,T., Habano,W., Jiao,Y.F., and Suzuki,K. (2005). Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. J. Gastroenterol. 40, 708-715. Boulay,J.L., Mild,G., Lowy,A., Reuter,J., Lagrange,M., Terracciano,L., Laffer,U., Herrmann,R., and Rochlitz,C. (2002). SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer. Br. J. Cancer 87, 630-634. Cho,K.R., Oliner,J.D., Simons,J.W., Hedrick,L., Fearon,E.R., Preisinger,A.C., Hedge,P., Silverman,G.A., and Vogelstein,B. (1994). The DCC gene: structural analysis and mutations in colorectal carcinomas. Genomics 19, 525-531. de la,C.A. (2004). Genetic predisposition to colorectal cancer. Nat. Rev. Cancer 4, 769-780. Derynck,R., Akhurst,R.J., and Balmain,A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129. Eppert,K., Scherer,S.W., Ozcelik,H., Pirone,R., Hoodless,P., Kim,H., Tsui,L.C., Bapat,B., Gallinger,S., Andrulis,I.L., Thomsen,G.H., Wrana,J.L., and Attisano,L. (1996). MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543-552. Fazeli,A., Dickinson,S.L., Hermiston,M.L., Tighe,R.V., Steen,R.G., Small,C.G., Stoeckli,E.T., Keino-Masu,K., Masu,M., Rayburn,H., Simons,J., Bronson,R.T., Gordon,J.I., Tessier-Lavigne,M., and Weinberg,R.A. (1997). Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796-804. Fearon,E.R., Cho,K.R., Nigro,J.M., Kern,S.E., Simons,J.W., Ruppert,J.M., Hamilton,S.R., Preisinger,A.C., Thomas,G., Kinzler,K.W., and . (1990). Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49-56. Fearon,E.R. and Vogelstein,B. (1990). A genetic model for colorectal tumorigenesis. Cell 61, 759-767. Friedl,W., Kruse,R., Uhlhaas,S., Stolte,M., Schartmann,B., Keller,K.M., Jungck,M., Stern,M., Loff,S., Back,W., Propping,P., and Jenne,D.E. (1999). Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes. Cancer 25, 403-406. Fukushima,T., Mashiko,M., Takita,K., Otake,T., Endo,Y., Sekikawa,K., and Takenoshita,S. (2003). Mutational analysis of TGF-beta type II receptor, Smad2, Smad3, Smad4, Smad6 and Smad7 genes in colorectal cancer. J. Exp. Clin. Cancer Res. 22, 315-320. Grady,W.M. and Markowitz,S. (2000). Genomic instability and colorectal cancer. Curr. Opin. Gastroenterol. 16, 62-67. Had ija,M.P., Kapitanovic,S., Radosevic,S., Cacev,T., Mirt,M., Kovacevic,D., Cacev,T., Hadzija,M., Spaventi,R., and Pavelic,K. (2001). Loss of heterozygosity of DPC4 tumor suppressor gene in human sporadic colon cancer. J. Mol. Med. 79, 128-132. Hadzija,M.P., Radosevic,S., Kovacevic,D., Lukac,J., Hadzija,M., Spaventi,R., Pavelic,K., and Kapitanovic,S. (2004). Status of the DPC4 tumor suppressor gene in sporadic colon adenocarcinoma of Croatian patients: identification of a novel somatic mutation. Mutat. Res. 548, 61-73. Hahn,S.A., Schutte,M., Hoque,A.T., Moskaluk,C.A., da Costa,L.T., Rozenblum,E., Weinstein,C.L., Fischer,A., Yeo,C.J., Hruban,R.H., and Kern,S.E. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350-353. Holinski-Feder,E., Muller-Koch,Y., Friedl,W., Moeslein,G., Keller,G., Plaschke,J., Ballhausen,W., Gross,M., Baldwin-Jedele,K., Jungck,M., Mangold,E., Vogelsang,H., Schackert,H.K., Lohsea,P., Murken,J., and Meitinger,T. (2001). DHPLC mutation analysis of the hereditary nonpolyposis colon cancer (HNPCC) genes hMLH1 and hMSH2. J. Biochem. Biophys. Methods 47, 21-32. Howe,J.R., Roth,S., Ringold,J.C., Summers,R.W., Jarvinen,H.J., Sistonen,P., Tomlinson,I.P., Houlston,R.S., Bevan,S., Mitros,F.A., Stone,E.M., and Aaltonen,L.A. (1998). Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086-1088. Howe,J.R., Shellnut,J., Wagner,B., Ringold,J.C., Sayed,M.G., Ahmed,A.F., Lynch,P.M., Amos,C.I., Sistonen,P., and Aaltonen,L.A. (2002). Common deletion of SMAD4 in juvenile polyposis is a mutational hotspot. Am. J. Hum. Genet. 70, 1357-1362. Iacobuzio-Donahue,C.A., Song,J., Parmiagiani,G., Yeo,C.J., Hruban,R.H., and Kern,S.E. (2004). Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin. Cancer Res. 10, 1597-1604. Iino,H., Fukayama,M., Maeda,Y., Koike,M., Mori,T., Takahashi,T., Kikuchi-Yanoshita,R., Miyaki,M., Mizuno,S., and Watanabe,S. (1994). Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73, 1324-1331. Isaksson-Mettavainio,M., Palmqvist,R., Forssell,J., Stenling,R., and Oberg,A. (2006). SMAD4/DPC4 expression and prognosis in human colorectal cancer. Anticancer Res. 26, 507-510. Kim,I.J., Ku,J.L., Yoon,K.A., Heo,S.C., Jeong,S.Y., Choi,H.S., Hong,K.H., Yang,S.K., and Park,J.G. (2000). Germline mutations of the dpc4 gene in Korean juvenile polyposis patients. Int. J. Cancer 86, 529-532. Koyama,M., Ito,M., Nagai,H., Emi,M., and Moriyama,Y. (1999). Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: identification of seven novel somatic mutations in tumors from Japanese patients. Mutat. Res. 406, 71-77. Lagna,G., Hata,A., Hemmati-Brivanlou,A., and Massague,J. (1996). Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832-836. Lassmann,S., Weis,R., Makowiec,F., Roth,J., Danciu,M., Hopt,U., and Werner,M. (2007). Array CGH identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J. Mol. Med. 85, 289-300. MacGrogan,D., Pegram,M., Slamon,D., and Bookstein,R. (1997). Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene 15, 1111-1114. Maitra,A., Molberg,K., bores-Saavedra,J., and Lindberg,G. (2000). Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am. J. Pathol. 157, 1105-1111. Mamot,C., Mild,G., Reuter,J., Laffer,U., Metzger,U., Terracciano,L., Boulay,J.L., Herrmann,R., and Rochlitz,C. (2003). Infrequent mutation of the tumour-suppressor gene Smad4 in early-stage colorectal cancer. Br. J. Cancer 88, 420-423. Miyaki,M., Iijima,T., Konishi,M., Sakai,K., Ishii,A., Yasuno,M., Hishima,T., Koike,M., Shitara,N., Iwama,T., Utsunomiya,J., Kuroki,T., and Mori,T. (1999). Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 18, 3098-3103. Miyaki,M. and Kuroki,T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 306, 799-804. Miyaki,M., Seki,M., Okamoto,M., Yamanaka,A., Maeda,Y., Tanaka,K., Kikuchi,R., Iwama,T., Ikeuchi,T., Tonomura,A., and . (1990). Genetic changes and histopathological types in colorectal tumors from patients with familial adenomatous polyposis. Cancer Res. 50, 7166-7173. Moren,A., Itoh,S., Moustakas,A., Dijke,P., and Heldin,C.H. (2000). Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene 19, 4396-4404. Raftery,L.A., Twombly,V., Wharton,K., and Gelbart,W.M. (1995). Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 139, 241-254. Rajagopalan,H., Nowak,M.A., Vogelstein,B., and Lengauer,C. (2003). The significance of unstable chromosomes in colorectal cancer. Nat. Rev. Cancer 3, 695-701. Riggins,G.J., Thiagalingam,S., Rozenblum,E., Weinstein,C.L., Kern,S.E., Hamilton,S.R., Willson,J.K., Markowitz,S.D., Kinzler,K.W., and Vogelstein,B. (1996). Mad-related genes in the human. Nat. Genet. 13, 347-349. Roijer,E., Moren,A., ten,D.P., and Stenman,G. (1998). Assignment1 of the Smad7 gene (MADH7) to human chromosome 18q21.1 by fluorescence in situ hybridization. Cytogenet. Cell Genet. 81, 189-190. Roth,S., Laiho,P., Salovaara,R., Launonen,V., and Aaltonen,L.A. (2000). No SMAD4 hypermethylation in colorectal cancer. Br. J. Cancer 83, 1015-1019. Salovaara,R., Roth,S., Loukola,A., Launonen,V., Sistonen,P., Avizienyte,E., Kristo,P., Jarvinen,H., Souchelnytskyi,S., Sarlomo-Rikala,M., and Aaltonen,L.A. (2002). Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 51, 56-59. Santarosa,M. and Ashworth,A. (2004). Haploinsufficiency for tumour suppressor genes: when you don't need to go all the way. Biochim. Biophys. Acta 1654, 105-122. Schouten,J.P., McElgunn,C.J., Waaijer,R., Zwijnenburg,D., Diepvens,F., and Pals,G. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57. Shi,Y. (2001). Structural insights on Smad function in TGFbeta signaling. Bioessays 23, 223-232. Shi,Y. and Massague,J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700. Takagi,Y., Kohmura,H., Futamura,M., Kida,H., Tanemura,H., Shimokawa,K., and Saji,S. (1996). Somatic alterations of the DPC4 gene in human colorectal cancers in vivo. Gastroenterology 111, 1369-1372. Takaku,K., Miyoshi,H., Matsunaga,A., Oshima,M., Sasaki,N., and Taketo,M.M. (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 59, 6113-6117. Takaku,K., Oshima,M., Miyoshi,H., Matsui,M., Seldin,M.F., and Taketo,M.M. (1998). Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645-656. Takaku,K., Wrana,J.L., Robertson,E.J., and Taketo,M.M. (2002). No effects of Smad2 (madh2) null mutation on malignant progression of intestinal polyps in Apc(delta716) knockout mice. Cancer Res. 62, 4558-4561. Takenoshita,S., Tani,M., Mogi,A., Nagashima,M., Nagamachi,Y., Bennett,W.P., Hagiwara,K., Harris,C.C., and Yokota,J. (1998). Mutation analysis of the Smad2 gene in human colon cancers using genomic DNA and intron primers. Carcinogenesis 19, 803-807. Taketo,M.M. and Takaku,K. (2000). Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice. Hum. Cell 13, 85-95. Thiagalingam,S., Lengauer,C., Leach,F.S., Schutte,M., Hahn,S.A., Overhauser,J., Willson,J.K., Markowitz,S., Hamilton,S.R., Kern,S.E., Kinzler,K.W., and Vogelstein,B. (1996). Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 13, 343-346. Tomlinson,I.P., Lambros,M.B., and Roylance,R.R. (2002). Loss of heterozygosity analysis: practically and conceptually flawed? Genes Chromosomes. Cancer 34, 349-353. Toyota,M., Imai,K., and Shinomura,Y. (2005). Haploinsufficiency in multiploid colorectal cancer. J. Gastroenterol. 40, 771-772. Vogelstein,B., Fearon,E.R., Hamilton,S.R., Kern,S.E., Preisinger,A.C., Leppert,M., Nakamura,Y., White,R., Smits,A.M., and Bos,J.L. (1988). Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525-532. Vogelstein,B., Fearon,E.R., Kern,S.E., Hamilton,S.R., Preisinger,A.C., Nakamura,Y., and White,R. (1989). Allelotype of colorectal carcinomas. Science 244, 207-211. Weber,F., Fukino,K., Villalona-Calero,M., and Eng,C. (2005). Limitations of single-strand conformation polymorphism analysis as a high-throughput method for the detection of EGFR mutations in the clinical setting. J. Clin. Oncol. 23, 5847-5848. Xu,X., Brodie,S.G., Yang,X., Im,Y.H., Parks,W.T., Chen,L., Zhou,Y.X., Weinstein,M., Kim,S.J., and Deng,C.X. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19, 1868-1874. Yang,X., Li,C., Herrera,P.L., and Deng,C.X. (2002). Generation of Smad4/Dpc4 conditional knockout mice. Genesis. 32, 80-81. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29891 | - |
| dc.description.abstract | 大腸直腸癌是台灣常見的癌症之ㄧ,過去數十年間,其發生率與死亡率都不斷的攀升,因此,大腸直腸癌在公共衛生議題的重要性可見一斑。大腸直腸癌的發生是一個多重步驟的過程,許多基因變異的累積終致腫瘤的形成。而其中第十八條染色體長臂(18 q21)區域是大腸直腸癌經常發生基因缺失的位置。此區域有三個可能的抑癌基因(tumor suppressor gene)存在,它們分別是DCC、Smad2以及Smad4基因。由於目前DCC與Smad2基因的支持證據較為薄弱,部分研究結果顯示Smad4基因可能是參與大腸直腸癌癌化過程主要的抑癌基因。然而,Smad4基因在大腸直腸癌中所扮演的角色仍有待進一步釐清。
本研究重新確認台灣偶發型大腸直腸癌病人腫瘤中第十八條染色體長臂 18 q21位置缺失的比率和Smad4基因異常的情形。除了運用傳統突變偵測技術來偵測基因的突變外,我們更採用一種新技術(Multiplex ligation-dependent probe amplification; MLPA)來精確偵測特定區域的基因套數變化。在63個病人中,我們共發現19個新的突變,其中只有兩個是用傳統突變偵測方法找到的,由於MLPA技術的引入,Smad4基因突變的偵測比率大幅升高。相較於染色體18 q21區域缺失的比率(42.4%),Smad4基因突變的比率(30.2%)雖略低,但這似乎意味著Smad4基因確實是參與在大腸直腸癌癌化過程中的抑癌基因。 | zh_TW |
| dc.description.abstract | Colorectal cancer is currently the third most common cancer in Taiwan. Over the past decade, the mortality rate of colorectal cancer has increased remarkably. Therefore, it has become an important public health issue these days. The initiation and progression of colorectal cancer is a multi-step process leading to the accumulation of genomic alterations occurring over the lifetime of a tumor. Chromosome 18q21 is one of the most frequently lost regions in colorectal cancer. There are three candidate tumor suppressor genes located in this region, including DCC, Smad2 and Smad4. Since accumulated evidence has failed to support DCC and Smad2 as tumor suppressor genes involved in colorectal carcinogenesis, Smad4 seems to be the major one. However, there is a gap existing between chromosome loss of 18q and mutations of Smad4.
In our study, we reconfirmed the status of 18q and screened all the coding region of Smad4 gene for small mutations. Furthermore, we performed a novel method, multiplex ligation-dependent probe amplification (MLPA), to detect copy number changes of Smad4. Among 63 patients analyzed, 19 (30.2%) mutations were identified and only two were found by conventional mutation detection methods. By using MLPA, the frequency of Smad4 mutations was raised. Although the relative low frequency of Smad4 inactivation (30.2%) contrasts with the high frequency of LoH at 18q21 (42.4%), it may implicate that Smad4 is the major tumor suppressor gene contributing to colorectal carcinogenesis in 18q21 region. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:23:33Z (GMT). No. of bitstreams: 1 ntu-96-R94b43027-1.pdf: 663930 bytes, checksum: a0721ad894b59ff91fc280db4f7a5f8c (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Content
Acknowledgement i 中文摘要 ii Abstract iii List of Tables vii List of Figures viii Introduction 1 Genetic alterations in colorectal carcinogenesis 2 Chromosome loss and three candidate genes within 18q21 region 3 Supporting evidence for Smad4 as a tumor suppressor gene 5 The purpose of this study 9 Materials and Methods 11 1. Sample collection 11 2. DNA extraction 11 3. Polymerase chain reaction 12 4. Loss of heterozygousity analysis 13 5. Multiplex ligation-dependent probe amplification analysis 15 6. Real-time polymerase chain reaction 17 7. Single-strand conformation polymorphism 18 8. Denature high performance chromatography 18 9. DNA sequencing 19 10. TOPO TA cloning 19 11. Statistical analysis 20 Result 21 1. Loss of heterozygousity analysis on chromosome 18q21 21 2. Copy number changes of Smad4 21 3. Mutation analysis by SSCP, DHPLC and DNA sequencing 23 4. Integrate the data from MLPA and mutation detection methods 24 5. Association between Smad4 mutation and clinical parameters 24 Discussion 26 1. Frequency of chromosome 18q loss varies in different studies 26 2. Small mutation provides insights of Smad4 protein function 27 3. Exon deletion accounts for the major part of Smad4 mutations 28 4. Smad4 may act in a haploinsufficient fashion 29 5. Perspectives in the future 30 Reference 32 Tables 42 Figures 50 | |
| dc.language.iso | en | |
| dc.subject | Smad4基因 | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 第十八條染色體缺失 | zh_TW |
| dc.subject | MLPA技術 | zh_TW |
| dc.subject | MLPA | en |
| dc.subject | Colorectal cancer | en |
| dc.subject | Chromosome 18q loss | en |
| dc.subject | Smad4 | en |
| dc.title | Smad4基因在台灣偶發型大腸直腸癌之突變分析 | zh_TW |
| dc.title | Mutation analysis of Smad4 gene in sporadic colorectal cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳雅慧(Y. H., Wu),柯逢春(Fon-Chun Ke),林光輝(Kwang-Huei Lin) | |
| dc.subject.keyword | 大腸直腸癌,第十八條染色體缺失,Smad4基因,MLPA技術, | zh_TW |
| dc.subject.keyword | Colorectal cancer,Chromosome 18q loss,Smad4,MLPA, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 648.37 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
