請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29877
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱錦洲,吳恩柏 | |
dc.contributor.author | Kuo-Ching San | en |
dc.contributor.author | 單國卿 | zh_TW |
dc.date.accessioned | 2021-06-13T01:22:54Z | - |
dc.date.available | 2012-07-24 | |
dc.date.copyright | 2007-07-24 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-18 | |
dc.identifier.citation | [1.1] J. C. Knigh, T. A. Birks, P. St. J. Russell and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Letters, Vol. 21, No. 19, pp. 1547-1549, 1996.
[1.2] T. A. Birks, J. C. Knight and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997. [1.3] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science, vol. 285, no. 3, pp. 1537–1539, 1999. [1.4] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell and J. -P. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett., vol. 34, no. 13, pp. 1347–1348, 1998. [1.5] W. H. Reeves, J. C. Knight and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express, vol. 10, no. 14, pp. 609–613, 2002. [1.6] M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke and A. P. Nicorovici, “Microstructured polymer optical fibre,” Opt. Express, vol. 9, no. 7, pp. 319–327, 2001. [1.7] A. Argyros, I M. Bassett, M. A. van Eijkelenborg, M. C. J. Large and J. Zagari, “Ring structures in microstructured polymer optical fibres,” Opt. Express, vol. 9, no. 13, pp. 813–820, 2001. [1.8] W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros and N. A. Issa, “Coupling in a twin-core microstructured polymer optical fiber,” Appl. Phys. Lett., vol. 84, no. 10, pp. 1689–1691, 2004. [1.9] J. Zagari, A. Argyros, N. A. Issa, G. Barton, G. Henry, M. C. J. Large, L. Poladian and M. A. van Eijkelenborg, “Small-core single-mode microstructured polymer optical fiber with large external diameter,” Opt. Lett., vol. 29, no. 8, pp. 818–820, 2004. [1.10] M. A. van Eijkelenborg, “Imaging with microstructured polymer fibre,” Op. Express, vol. 12, no. 2, pp. 342–346, 2004. [1.11] M. A. van Eijkelenborg, W. Padden and J. A. Besley, “Mechanically induced long-period gratings in microstructured polymer fibre,” Opt. Commun., vol. 236, pp. 75–78, 2004. [1.12] A. Argyros, M. A. van Eijkelenborg, S. D. Jackson, and R. P. Mildren, “Microstructured polymer fiber laser,” Op. Lett., vol. 29, no. 16, pp. 1882–1884, 2004. [1.13] M. C. J. Large, S. Ponrathnam, A. Argyros, N. S. Pujari and F. Cox, “Solution doping of microstructured polymer optical fibres,” Opt. Express, vol. 12, no. 9, pp. 1966–1971, 2004. [1.14] G. Emiliyanov, J. B. Jensen and O. Bang, “Localized biosensing with Topas microstructured polymer optical fiber,” Op. Lett., vol. 32, no. 5, pp. 460–462, 2007. [1.15] G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Optical Fiber Technology, vol. 10, pp. 325–335, 2004. [1.16] C. W. Huang, M. C. Ho, H. H. Chien, K. J. Ma, Z. P. Zheng, C. P. Yu, H. C. Chang, and C. C. Yang, “Design, fabrication, and characterization of microstructured polymer optical fibers,” paper TU3C-(16)-3, Pacific Rim Conference on Lasers and Electro-Optics, Taipei, Taiwan, 2002. [1.17] G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol., vol. 10, pp. 325−335, 2004. [1.18] C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys., vol. 92, no. 1, pp. 4−12, 2002. [1.19] A. D. Fitt, K. Furusawa, T. M. Monro and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol., vol. 19, no. 12, pp. 1924–1931, 2001. [1.20] J. I. Ramos, “Drawing of annular liquid jets at low Reynolds numbers,” Comput. Theor. Polym. Sci., vol. 11, no. 6, pp. 429–443, 2001. [1.21] J. Kim, H. K. Kim, U. C. Paek and B. H. Lee, “The fabrication of a photonic crystal fiber and measurement of its properties,” Journal of the Optical Society of Korean, vol. 7, no. 2, pp. 79–83, 2003. [1.22] S. Wu, “Surface and interfacial tensions of polymers melts. II. Poly(methyl methacrylate), Poly(n-butyl methacrylate), and Polystyrene,” J. Phys. Chem., vol. 74, no. 3, pp. 632–638, 1970. [1.23] H. M Reeve, A. M. Mescher, and A. F. Emery, ”Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” ASME J. Heat Transfer, vol. 126, pp. 236–243, 2004. [2.1] 鄭志平, “塑膠微結構光纖之研製,” 碩士論文, 中華大學, 民國92年7月 [2.2] Oriental Motor CO., LTD., 綜合目錄, 2004/2005 [2.3] Oriental Motor CO., LTD., EMP400 Series OPERATION MANUAL [2.4] http://www.omron.com.tw/img/product/b/b-pdf/EE-SX47_67.pdf [2.5] http://hk.knowledge.yahoo.com/question/?qid=7007011205084 [2.6] J. I. Ramos, “Drawing of annular liquid jets at low Reynolds numbers,” Comput. Theor. Polym. Sci., vol. 11, no. 6, pp. 429–443, 2001. [2.7] A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol., vol. 19, no. 12, pp. 1924–1931, 2001. [2.8] T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick and D. J. Richardson, “Chalcogenide holey fibres,” Electon. Lett., vol. 36, no. 24, pp. 1998–2000, 2000. [2.9] C. H. Jiang, M. G. Kuzyk, J. L. Ding, W. E. Johns, and D. J. Welker, “Fabrication and mechanical behavior of dye-doped polymer optical fiber,” J. Appl. Phys., vol. 92, no. 1, pp. 4−12, 2002. [2.10] H. M Reeve, A. M. Mescher, and A. F. Emery, ”Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” ASME J. Heat Transfer, vol. 126, pp. 236–243, 2004. [2.11] S. Wu, “Surface and interfacial tensions of polymers melts. II. Poly(methyl methacrylate), Poly(n-butyl methacrylate), and Polystyrene,” J. Phys. Chem., vol. 74, no. 3, pp. 632–638, 1970. [2.12] http://www.hwayu.com.tw/down.html [2.13] M. C. Potter, and D. C. Wiggert, Mechanics of Fluids, Brooks/Cole, USA, 2001. [2.14] J. W. McCarthy and G. Weetman, “Age and size structure of gap-dynamic, old-growth Boreal Forest stands in Newfoundland,” Silva Fennica, vol. 40, no. 2, pp. 209–230, 2006. [2.15] G. C. Georgiou and T. C. Papanastasiou, “Laminar Newtonian jets at high Reynolds number and high surface tension,” AIChE J., vol. 34, no. 9, pp. 1559–1562, 1988. [2.16] G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol., vol. 10, pp. 325−335, 2004. [3.1] 劉大佼, “高分子加工原理與應用,” 揚智文化事業股份有限公司, 1997. [3.2] A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the Fabrication of Hollow Fibers: Capillary Drawing,” Journal of Lightwave Technology, Vol. 19, No. 12, pp. 1924-1931, 2001. [3.3] J. I. Ramos, “Drawing of Annular Liquid Jets at Low Reynolds Numbers,” Computational and Theoretical Polymer Science, Vol. 11, pp. 429-443, 2001. [3.4] M. C. Potter and D. C. Wiggert, “Mechanics of fluids,” 3rd ed., Brooks/Cole, 2002. [3.5] http://mathworld.wolfram.com/Curvature.html [3.6] http://en.wikipedia.org/wiki/Reynolds_number [3.7] http://scienceworld.wolfram.com/physics/FroudeNumber.html [3.8] http://en.wikipedia.org/wiki/Capillary_number [3.9] M. D. Greenberg, “Foundations of Applied Mathematics,” Prentice-Hall Inc., 1978. [3.10] S. C. Chapra and R. P. Canale, “Numerical Methods for Engineers,” 2nd ed., McGraw-Hill, Inc., 1988. [3.11] H. B. Keller, “Numerical Solution of Two Point Boundary Value Problems,” Dover, New York, 1992. [3.12] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes in Fortran-The Art of Scientific Computing,” 2nd ed., Cambridge University Press, 1992. [4.1] A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the Fabrication of Hollow Fibers: Capillary Drawing,” Journal of Lightwave Technology, Vol. 19, No. 12, pp. 1924-1931, 2001. [4.2] 劉大佼, “高分子加工原理與應用,” 揚智文化事業股份有限公司, 1997. [4.3] http://en.wikipedia.org/wiki/Capillary_number [4.4] 范兆沅, “ CNC切削工具機使用Mastercam系統後對於2-D平面加工流程之影響與分析,” 國立中央大學機械工程研究所碩士論文, 2003. [4.5] http://en.wikipedia.org/wiki/Polymethyl_methacrylate [4.6] http://elearning.stut.edu.tw/m_facture/web/ch6.htm [4.7] http://www.gokeyat.com/download/drill.htm [4.8] S. Wu, “Surface and Interfacial Tensions of Polymer Melts. II. Poly(methyl methacrylate), Poly(n-butyl methacrylate), and Polystyrene,” The Journal of Physical Chemistry, Vol. 74, No. 3, pp. 632-638, 1970. [4.9] H. M. Reeve, A. M. Mescher, and A. F. Emery, “Investigation of Steadt-State Drawing Force and Heat Transfer in Polymer Optical Fiber Manufacturing,” Journal of Heat Transfer, Vol. 126, pp. 236-243, 2004. [4.10] http://www.infinet.com.tw/support/app/TM/5965-7822TW-pract-temp-part2.pdf [4.11] J. Zagari, A. Argyros, N. A. Issa, G. Barton, G. Henry, M. C. J. Large, Leon Poladian, and M. A. van Eijkelenborg, “Small-Core Single-Mode Microstructured Polymer Optical Fiber with Large External Diameter,” Optics Letters, Vol. 29, No. 8, pp. 818-820, 2004. [4.12] T. A. Birks, J. C. Knight, and P. St. Russell, “Endless Single-Mode Photonic Crystal Fiber,” Optics Letters, Vol. 22, No. 13, pp. 961-963, 1997. [4.13] G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of Microstructured Polymer Optical Fibres,” Optical Fiber Technology, Vol. 10, pp. 325-335, 2004. [4.14] H. M. Reeve and A. M. Mescher, “Effect of Unsteady Natural Convection on the diameter of Drawn Polymer Optical Fiber,” Optics Express, Vol. 11, No. 15, pp. 1770-1779, 2003. [5.1] G. Barton, M. A, van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of Microstructured optical fibres,” Optical Fiber Technology, Vol. 10, pp. 325-335, 2004. [5.2] M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured Polymer Optical Fibre,” Optics Express, Vol. 9, No. 7, pp. 319-327, 2001. [5.3] J. Zagari, A. Argyros, N. A. Issa, G. Barton, G. Henry, M. C. J. Large, Leon Poladian, and M. A. van Eijkelenborg, “Small-Core Single-Mode Microstructured Polymer Optical Fiber with Large External Diameter,” Optics Letters, Vol. 29, No. 8, pp. 818-820, 2004. [5.4] T. A. Birks, J. C. Knight, and P. St. Russell, “Endless Single-Mode Photonic Crystal Fiber,” Optics Letters, Vol. 22, No. 13, pp. 961-963, 1997. [5.5] N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen and K. P. Hansen, “Modal Cutoff and the V Parameter in Photonic Crystal Fibers,” Optics Letters, Vol. 28, No. 20, pp. 1879-1881, 2003. [5.6] 劉大佼, “高分子加工原理與應用,” 揚智文化事業股份有限公司, 1997. [5.7] http://140.135.96.1/~cimipi/class1.htm [5.8] R. Buczynski, “Photonic Crystal Fibers,” ACTA PHYSICA POLONICA A, Vol. 106, No. 2, Proceedings of the XXXIII International School of Semiconducting Compounds, Jaszowiec, 2004. [5.9] M. Midrio, M. P. Singh, and C. G. Someda, “The Space Filling Mode of Holey Fibers: An Analytical Vectorial Solution,” Journal of Lightwave Technology, Vol. 18, No. 7, pp. 1031-1037, 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29877 | - |
dc.description.abstract | 本研究藉由自行組裝的簡易型抽製設備達到製作微結構高分子光纖(microstructured polymer optical fiber, MPOF)的目的。首先製作單孔的微結構光纖,並量測光纖的空氣孔直徑(dmpof),並以相同抽絲比(draw ratio, DR)但搭配不同抽絲速度(draw speed, Ud)條件下,探討光纖空氣孔與毛細數(capillary number, Ca)間的關係,實驗結果並利用3-parameter Chapman-Richards function計算空氣孔直徑的極限值。接著製作單層(6孔)的微結構光纖,同樣地,量測其空氣孔直徑與孔距(hole spacing),並比較其與單孔型態的尺寸,以應用在三層微結構光纖的製作。
實驗結果方面:(1) 以Ca = 1.5 × 105為界,將實驗範圍區分為表面張力區(Ca < 1.5 × 105)及平衡區(Ca > 1.5 × 105)。(2) 在表面張力區,由於表面張力作用較明顯,使得空氣孔直徑隨Ca變化;在平衡區,表面張力與黏滯力達到平衡,所以空氣孔直徑會趨近一定值。(3) 當改變抽絲溫度,但仍以相同Ca 抽製光纖,實驗結果顯示:光纖空氣孔直徑幾乎相同;但若改以相同抽絲速度製作,則溫度越高,空氣孔直徑會減少,因為溫度高,黏滯力快速的下降。(4) 在相同的實驗條件下,單孔與單層(6孔)微結構光纖的空氣孔直徑幾乎相同,這項結果將可應用及驗證於三層的微結構光纖實驗中。(5) 若使用臨界值d/Λ = 0.45,微結構高分子光纖在Ca < 2×104或縮孔率在33%以上時,可製作出endless single mode的微結構光纖。 誤差分析方面:(1) 低抽絲速度條件下可製作空氣孔直徑較小的光纖,但相對地其對熱電耦及溫控器的精度要求相當高。在成本及光纖尺寸的均勻度方面,高抽絲速度應是較佳的選擇。(2)在低抽絲速度時( < 20 mm/sec),抽絲溫度是影響光纖空氣孔直徑的主因,在較高抽絲速度時( > 20 mm/sec),預型體本身的空氣孔直徑誤差則是誤差的主要來源。 三層微結構光纖製作方面:依據單孔與單層型態的實驗結果,建立三層空氣孔型態的空氣孔直徑與孔距的迭代(iteration)運算流程,並依據相同抽製條件,微結構光纖空氣孔直徑相同的結論,以相同條件抽製單孔光纖並驗證其結果。 | zh_TW |
dc.description.abstract | In this study, a plain drawing apparatus was assembled to fabricate the microstructured polymer optical fibers (MPOFs). We first drew the one-hole MPOFs and measured the air hole diameter (dmpof). Then, the one-layer (six-hole) MPOFs were fabricated with the same drawing conditions. The relationship between dmpof and capillary number (Ca) was illustrated. The limit of dmpof was calculated using the 3-parameter Chapman-Richards function, Furthermore, the analysis and comparison between the one-hole and six-hole patterns were conducted to fabricate the three-layer MPOFs.
For one-hole MPOF, the experimental results are listed as follows: (1) Two draw regimes: surface-tension-dominated and force-balanced were separated with the critical capillary number of Ca = 1.5 × 105. The draw regime is surface-tension-dominated for Ca < 1.5 × 105 and force-balanced for Ca > 1.5 × 105. (2) In surface-tension-dominated regime, the air hole diameter changes with Ca and reaches a limit in the force-balanced regime. (3) When MPOFs were fabricated at different Td with the same DR, the air hole diameter changes with Ca. When MPOFs were fabricated with the same draw speed (Ud) and draw ratio, the dmpof drawn from high draw temperature is smaller than that drawn from low draw temperature due to large loss of viscosity at high draw temperature. (4) With considering the experimental results, the air hole diameters of one-hole and six-hole patterns conduct to the similar values at the same draw conditions. This result was utilized in fabricating the three-layer MPOFs. (5) An endless single mode MPOF can be produced for Ca < 2×104 (collapse ratio > 33%) provided that the critical value of d/Λ = 0.45 is applied. In error analysis, the results are list as follows: (1) At low draw speed, a MPOF with small air hole diameter can be produced. However, highly precise thermal couples and thermal controllers are required. Therefore, high draw speed is a better choice with considering the cost and fiber uniformity. (2) For low draw speed (< 20 mm/sec), Td is the major cause on the error of dmpof. For high draw speed (> 20 mm/sec), dpreform is the major cause on the error of dmpof. In the fabrication of 3-layer MPOFs: an iteration process has be derived to determine the air hole diameter and hole spacing. The numerical results are coordinated with the experimental results. Furthermore, the air hole diameter of one-hole MPOFs fabricated with the same draw conditions is similar to the results of 3-layer MPOFs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:22:54Z (GMT). No. of bitstreams: 1 ntu-96-D90543001-1.pdf: 4165771 bytes, checksum: 101bf1a9ed496155de9c418e16ac1150 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書...........................................i
誌謝.....................................................iii 摘要.......................................................v Abstract.................................................vii 目錄.......................................................I 表目錄....................................................IV 圖目錄....................................................IX 第 1 章 緒論...........................................1-1 1.1 研究緣由..............................1-1 1.2 文獻回顧..............................1-3 1.3 研究範疇..............................1-5 1.4 參考文獻..............................1-6 第 2 章 實驗設備.......................................2-1 2.1 前言..................................2-1 2.2 抽絲塔................................2-1 2.2.1 進料機構.......................................2-2 2.2.2 抽絲機構.......................................2-3 2.2.3 加熱機構.......................................2-3 2.2.4 預型體位置微調機制.............................2-4 2.3 壓克力材料性質........................2-5 2.4 實驗結果..............................2-6 2.5 結語..................................2-9 2.6 參考文獻.............................2-11 第 3 章 理論推導.......................................3-1 3.1 前言..................................3-1 3.2 統御方程式............................3-2 3.2.1 質量守恆方程式.................................3-2 3.2.2 動量守恆方程式.................................3-2 3.3 邊界條件..............................3-5 3.3.1 法線方向的應力平衡.............................3-5 3.3.2 切線方向的應力平衡.............................3-6 3.3.3 邊界相容條件...................................3-7 3.4 無因次化..............................3-9 3.4.1 質量守恆方程式的無因次化.......................3-9 3.4.2 動量守恆方程式的無因次化.......................3-9 3.4.3 法線方向應力平衡的無因次化....................3-10 3.4.4 切線方向應力平衡的無因次化....................3-11 3.4.5 邊界相容條件的無因次化........................3-11 3.5 漸進方程式的推導.....................3-12 3.5.1 質量守恆方程式的漸進式........................3-12 3.5.2 動量守恆方程式的漸進式........................3-13 3.5.3 法線方向應力平衡的漸進式......................3-14 3.5.4 切線方向應力平衡的漸進式......................3-15 3.5.5 邊界相容條件的漸進式..........................3-17 3.6 首階漸進方程組.......................3-18 3.7 射擊法...............................3-23 3.8 結語.................................3-27 3.10 參考文獻......................................3-28 第 4 章 誤差分析.......................................4-1 4.1 前言..................................4-1 4.2 特徵長度(L)...........................4-2 4.3 預型體空氣孔直徑(d0)誤差..............4-5 4.4 預型體外徑(D0)誤差....................4-7 4.5 進料速度(Uf)誤差......................4-8 4.6 抽絲速度(Ud)誤差......................4-9 4.7 抽絲溫度(Td)誤差.....................4-10 4.8 在抽絲比相同、抽絲速度不同條件下,誤差對光纖外徑與空氣孔直徑的影響分析....................................4-12 4.9 結語.................................4-16 4.10 參考文獻......................................4-18 第 5 章 多層微結構光纖製作.............................5-1 5.1 前言..................................5-1 5.2 單孔與單層型態........................5-2 5.3 偏心結構..............................5-4 5.4 三層微結構光纖製作....................5-6 5.5 結語..................................5-9 5.6 參考文獻.............................5-10 第 6 章 結論與未來展望.................................6-1 6.1 結論..................................6-1 6.2 未來展望..............................6-3 | |
dc.language.iso | zh-TW | |
dc.title | 微結構高分子光纖的製作與分析 | zh_TW |
dc.title | Fabrication and analysis of Microstructured Polymer Optical Fibers | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 賴?杰,馬廣仁,張家歐 | |
dc.subject.keyword | 微結構高分子光纖,抽絲比,毛細數,縮孔率, | zh_TW |
dc.subject.keyword | microstructured polymer optical fiber,draw ratio,Capillary number,collapse ratio, | en |
dc.relation.page | 201 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 4.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。