請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29859
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王藹農 | |
dc.contributor.author | Lih-Jen Lin | en |
dc.contributor.author | 林立人 | zh_TW |
dc.date.accessioned | 2021-06-13T01:22:03Z | - |
dc.date.available | 2007-07-20 | |
dc.date.copyright | 2007-07-20 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-16 | |
dc.identifier.citation | [1] J. P. Bourguignon et al. premi`ere classe de Chern et courbure de Ricci:
preuve de la conjecture de Calabi, S´eminaire Palaiseau 1987. Ast´erisque, 58, 1987. [2] E. Calabi. The space of K¨ahler metrics, Proc. Internat. Congress Math. Amsterdam, Vol. 2 (1954), 206-207. [3] D. Gilbarg, N. S. Trudinger. Elliptic Partial Di erential Equations of Second Order, [4] V. L. Hansen(Ed.). Di erential Geometry, Lecture Notes in Mathematics 1263, Springer-Verlag. [5] D. Huybrechts. Complex Geometry −An Introduction, Universitext, Springer. [6] J. Jost. Riemannian Geometry and Geometric Analysis, Universitext, Springer. [7] D. Joyce. Compact Manifolds with Special Holonomy, Oxford University Press. [8] J. Morrow, K. Kodaira. Complex Manifolds. [9] Y.-T. Siu. Lectures on Hermitian-Einstein Metrics for Stable Bundles and K¨ahler-Einstein Metrics [10] S.-T. Yau. On the Ricci curvature of a compact K¨ahler manifold and the complex Monge-Amp`ere equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29859 | - |
dc.description.abstract | 這篇論文的目的是證明卡拉比猜想。在這篇論文裡我們將稱它為
卡拉比-丘定理。我們將不會討論這個定理的任何應用。我只是盡 自己可能去把證明寫清楚。 | zh_TW |
dc.description.abstract | The goal of this thesis is to prove the Calabi conjecture,
which will be refered to as the Calabi-Yau Theorem. No applications of this theorem will be discussed. I just try my best to make the proof as clear as possible. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:22:03Z (GMT). No. of bitstreams: 1 ntu-96-R94221004-1.pdf: 346325 bytes, checksum: 85ae3e01d601ea510d1b71a7948fa26f (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 誌謝 ii
中文摘要 iii Abstract iv 1 Introduction 1 2 The equation 3 3 Uniqueness 8 4 The method of continuity 10 5 Openness 12 6 Closedness 17 7 The C0 estimate 22 8 The C2 estimate 29 References 38 | |
dc.language.iso | en | |
dc.title | 卡拉比-丘定理 | zh_TW |
dc.title | The Calabi-Yau Theorem | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳榮凱,李瑩英 | |
dc.subject.keyword | 卡拉比,丘,猜想, | zh_TW |
dc.subject.keyword | Calabi,Yau,conjecture, | en |
dc.relation.page | 38 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-18 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 338.21 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。