Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29859
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王藹農
dc.contributor.authorLih-Jen Linen
dc.contributor.author林立人zh_TW
dc.date.accessioned2021-06-13T01:22:03Z-
dc.date.available2007-07-20
dc.date.copyright2007-07-20
dc.date.issued2007
dc.date.submitted2007-07-16
dc.identifier.citation[1] J. P. Bourguignon et al. premi`ere classe de Chern et courbure de Ricci:
preuve de la conjecture de Calabi, S´eminaire Palaiseau 1987. Ast´erisque,
58, 1987.
[2] E. Calabi. The space of K¨ahler metrics, Proc. Internat. Congress Math.
Amsterdam, Vol. 2 (1954), 206-207.
[3] D. Gilbarg, N. S. Trudinger. Elliptic Partial Di erential Equations of
Second Order,
[4] V. L. Hansen(Ed.). Di erential Geometry, Lecture Notes in Mathematics
1263, Springer-Verlag.
[5] D. Huybrechts. Complex Geometry −An Introduction, Universitext,
Springer.
[6] J. Jost. Riemannian Geometry and Geometric Analysis, Universitext,
Springer.
[7] D. Joyce. Compact Manifolds with Special Holonomy, Oxford University
Press.
[8] J. Morrow, K. Kodaira. Complex Manifolds.
[9] Y.-T. Siu. Lectures on Hermitian-Einstein Metrics for Stable Bundles
and K¨ahler-Einstein Metrics
[10] S.-T. Yau. On the Ricci curvature of a compact K¨ahler manifold and
the complex Monge-Amp`ere equation, I, Comm. Pure Appl. Math. 31
(1978), 339-411
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29859-
dc.description.abstract這篇論文的目的是證明卡拉比猜想。在這篇論文裡我們將稱它為
卡拉比-丘定理。我們將不會討論這個定理的任何應用。我只是盡
自己可能去把證明寫清楚。
zh_TW
dc.description.abstractThe goal of this thesis is to prove the Calabi conjecture,
which will be refered to as the Calabi-Yau Theorem. No
applications of this theorem will be discussed. I just
try my best to make the proof as clear as possible.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:22:03Z (GMT). No. of bitstreams: 1
ntu-96-R94221004-1.pdf: 346325 bytes, checksum: 85ae3e01d601ea510d1b71a7948fa26f (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
1 Introduction 1
2 The equation 3
3 Uniqueness 8
4 The method of continuity 10
5 Openness 12
6 Closedness 17
7 The C0 estimate 22
8 The C2 estimate 29
References 38
dc.language.isoen
dc.subject猜想zh_TW
dc.subject卡拉比zh_TW
dc.subjectconjectureen
dc.subjectCalabien
dc.subjectYauen
dc.title卡拉比-丘定理zh_TW
dc.titleThe Calabi-Yau Theoremen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳榮凱,李瑩英
dc.subject.keyword卡拉比,丘,猜想,zh_TW
dc.subject.keywordCalabi,Yau,conjecture,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2007-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
338.21 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved