Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29842
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃麗華(Lih-Hwa Hwang)
dc.contributor.authorBo-Hua Chenen
dc.contributor.author陳柏樺zh_TW
dc.date.accessioned2021-06-13T01:21:13Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-19
dc.identifier.citation1. Farazi, P.A. and R.A. DePinho, Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer, 2006. 6(9): p. 674-87.
2. Hwang, L.H., Gene therapy strategies for hepatocellular carcinoma. J Biomed Sci, 2006. 13(4): p. 453-68.
3. Falkson, G., et al., Prognostic factors for survival in hepatocellular carcinoma. Cancer Res, 1988. 48(24 Pt 1): p. 7314-8.
4. Lin, T.M., W.T. Tsu, and C.J. Chen, Mortality of hepatoma and cirrhosis of liver in Taiwan. Br J Cancer, 1986. 54(6): p. 969-76.
5. Chen, C.H. and D.S. Chen, [Hepatocellular carcinoma: 30 years' experience in Taiwan]. J Formos Med Assoc, 1992. 91 Suppl 3: p. S187-202.
6. Badvie, S., Hepatocellular carcinoma. Postgrad Med J, 2000. 76(891): p. 4-11.
7. Lavanchy, D., Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat, 2004. 11(2): p. 97-107.
8. Chisari, F.V., Unscrambling hepatitis C virus-host interactions. Nature, 2005. 436(7053): p. 930-2.
9. Bowen, D.G. and C.M. Walker, Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature, 2005. 436(7053): p. 946-52.
10. Rehermann, B. and M. Nascimbeni, Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol, 2005. 5(3): p. 215-29.
11. Colombo, M., Hepatocellular carcinoma. J Hepatol, 1992. 15(1-2): p. 225-36.
12. Minouchi, K., S. Kaneko, and K. Kobayashi, Mutation of p53 gene in regenerative nodules in cirrhotic liver. J Hepatol, 2002. 37(2): p. 231-9.
13. Ishizaki, Y., et al., Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol, 2004. 24(5): p. 1077-83.
14. Shimojima, M., et al., Detection of telomerase activity, telomerase RNA component, and telomerase reverse transcriptase in human hepatocellular carcinoma. Hepatol Res, 2004. 29(1): p. 31-38.
15. Livraghi, T., et al., Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology, 1995. 197(1): p. 101-8.
16. Pelletier, G., et al., Treatment of unresectable hepatocellular carcinoma with lipiodol chemoembolization: a multicenter randomized trial. Groupe CHC. J Hepatol, 1998. 29(1): p. 129-34.
17. Lai, C.L., et al., Doxorubicin versus no antitumor therapy in inoperable hepatocellular carcinoma. A prospective randomized trial. Cancer, 1988. 62(3): p. 479-83.
18. Farmer, D.G. and R.W. Busuttil, The role of multimodal therapy in the treatment of hepatocellular carcinoma. Cancer, 1994. 73(11): p. 2669-70.
19. Venook, A.P., Treatment of hepatocellular carcinoma: too many options? J Clin Oncol, 1994. 12(6): p. 1323-34.
20. Hertl, M. and A.B. Cosimi, Liver transplantation for malignancy. Oncologist, 2005. 10(4): p. 269-81.
21. Hanahan, D. and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-64.
22. Kountouras, J., C. Zavos, and D. Chatzopoulos, Apoptotic and anti-angiogenic strategies in liver and gastrointestinal malignancies. J Surg Oncol, 2005. 90(4): p. 249-59.
23. Kang, M.A., et al., The growth inhibition of hepatoma by gene transfer of antisense vascular endothelial growth factor. J Gene Med, 2000. 2(4): p. 289-96.
24. Schmitz, V., et al., Treatment of colorectal and hepatocellular carcinomas by adenoviral mediated gene transfer of endostatin and angiostatin-like molecule in mice. Gut, 2004. 53(4): p. 561-7.
25. Matsumoto, K., et al., Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology, 2004. 40(1): p. 252-9.
26. Wang, L., et al., Suppression of angiogenesis and tumor growth by adenoviral-mediated gene transfer of pigment epithelium-derived factor. Mol Ther, 2003. 8(1): p. 72-9.
27. Yao, L., et al., Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 1999. 93(5): p. 1612-21.
28. Dellabona, P., et al., Vascular attack and immunotherapy: a 'two hits' approach to improve biological treatment of cancer. Gene Ther, 1999. 6(2): p. 153-4.
29. Strieter, R.M., et al., Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun, 1995. 210(1): p. 51-7.
30. Brunda, M.J., et al., Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med, 1993. 178(4): p. 1223-30.
31. Barajas, M., et al., Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12. Hepatology, 2001. 33(1): p. 52-61.
32. Narvaiza, I., et al., Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol, 2000. 164(6): p. 3112-22.
33. Hurwitz, H., et al., Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 2004. 350(23): p. 2335-42.
34. Ferreira, C.G., C. Tolis, and G. Giaccone, p53 and chemosensitivity. Ann Oncol, 1999. 10(9): p. 1011-21.
35. Sandig, V., et al., Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med, 1997. 3(3): p. 313-9.
36. Walczak, H., et al., Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med, 1999. 5(2): p. 157-63.
37. Ma, H., et al., Oral adeno-associated virus-sTRAIL gene therapy suppresses human hepatocellular carcinoma growth in mice. Hepatology, 2005. 42(6): p. 1355-63.
38. Yamanaka, T., et al., Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology, 2000. 32(3): p. 482-90.
39. Sinkovics, J. and J. Horvath, New developments in the virus therapy of cancer: a historical review. Intervirology, 1993. 36(4): p. 193-214.
40. Strong, J.E., et al., The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. Embo J, 1998. 17(12): p. 3351-62.
41. Bischoff, J.R., et al., An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 1996. 274(5286): p. 373-6.
42. Heise, C., et al., ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med, 1997. 3(6): p. 639-45.
43. Vollmer, C.M., et al., p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res, 1999. 59(17): p. 4369-74.
44. Habib, N.A., et al., E1B-deleted adenovirus (dl1520) gene therapy for patients with primary and secondary liver tumors. Hum Gene Ther, 2001. 12(3): p. 219-26.
45. Li, Y., et al., A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res, 2001. 61(17): p. 6428-36.
46. Jakubczak, J.L., et al., An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res, 2003. 63(7): p. 1490-9.
47. Huang, T.G., et al., Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther, 2003. 10(15): p. 1241-7.
48. Stojdl, D.F., et al., Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med, 2000. 6(7): p. 821-5.
49. Keskinen, P., et al., Impaired antiviral response in human hepatoma cells. Virology, 1999. 263(2): p. 364-75.
50. Moolten, F.L., Drug sensitivity ('suicide') genes for selective cancer chemotherapy. Cancer Gene Ther, 1994. 1(4): p. 279-87.
51. Mesnil, M. and H. Yamasaki, Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res, 2000. 60(15): p. 3989-99.
52. Kuriyama, S., et al., Complete cure of established murine hepatocellular carcinoma is achievable by repeated injections of retroviruses carrying the herpes simplex virus thymidine kinase gene. Gene Ther, 1999. 6(4): p. 525-33.
53. Kimura, O., et al., Retroviral delivery of DNA into the livers of transgenic mice bearing premalignant and malignant hepatocellular carcinomas. Hum Gene Ther, 1994. 5(7): p. 845-52.
54. Arbuthnot, P.B., et al., In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector. Hum Gene Ther, 1996. 7(13): p. 1503-14.
55. Kanai, F., et al., Gene therapy for alpha-fetoprotein-producing human hepatoma cells by adenovirus-mediated transfer of the herpes simplex virus thymidine kinase gene. Hepatology, 1996. 23(6): p. 1359-68.
56. Mohr, L., et al., Targeted gene transfer to hepatocellular carcinoma cells in vitro using a novel monoclonal antibody-based gene delivery system. Hepatology, 1999. 29(1): p. 82-9.
57. Kanai, F., et al., In vivo gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer Res, 1997. 57(3): p. 461-5.
58. Topf, N., et al., Regional 'pro-drug' gene therapy: intravenous administration of an adenoviral vector expressing the E. coli cytosine deaminase gene and systemic administration of 5-fluorocytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther, 1998. 5(4): p. 507-13.
59. Filipowicz, W., RNAi: the nuts and bolts of the RISC machine. Cell, 2005. 122(1): p. 17-20.
60. Sontheimer, E.J. and R.W. Carthew, Silence from within: endogenous siRNAs and miRNAs. Cell, 2005. 122(1): p. 9-12.
61. Li, J. and M.D. Tsai, Novel insights into the INK4-CDK4/6-Rb pathway: counter action of gankyrin against INK4 proteins regulates the CDK4-mediated phosphorylation of Rb. Biochemistry, 2002. 41(12): p. 3977-83.
62. Li, H., et al., Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 2005. 128(7): p. 2029-41.
63. Wirth, T., et al., Telomerase-dependent virotherapy overcomes resistance of hepatocellular carcinomas against chemotherapy and tumor necrosis factor-related apoptosis-inducing ligand by elimination of Mcl-1. Cancer Res, 2005. 65(16): p. 7393-402.
64. Bretscher, P. and M. Cohn, A theory of self-nonself discrimination. Science, 1970. 169(950): p. 1042-9.
65. Lafferty, K.J. and A.J. Cunningham, A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci, 1975. 53(1): p. 27-42.
66. Janeway, C., Immunogenicity signals 1,2,3 ... and 0. Immunol Today, 1989. 10(9): p. 283-6.
67. Matzinger, P., Tolerance, danger, and the extended family. Annu Rev Immunol, 1994. 12: p. 991-1045.
68. Shortman, K. and S.H. Naik, Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol, 2007. 7(1): p. 19-30.
69. Ardavin, C., S. Amigorena, and C. Reis e Sousa, Dendritic cells: immunobiology and cancer immunotherapy. Immunity, 2004. 20(1): p. 17-23.
70. Sgadari, C., et al., Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13791-6.
71. Sgadari, C., et al., Mig, the monokine induced by interferon-gamma, promotes tumor necrosis in vivo. Blood, 1997. 89(8): p. 2635-43.
72. Bennett, I.M., et al., Definition of a natural killer NKR-P1A+/CD56-/CD16- functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med, 1996. 184(5): p. 1845-56.
73. Diebold, S.S., et al., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004. 303(5663): p. 1529-31.
74. Heil, F., et al., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 2004. 303(5663): p. 1526-9.
75. Kariko, K., et al., mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem, 2004. 279(13): p. 12542-50.
76. Levy, D.E., I. Marie, and A. Prakash, Ringing the interferon alarm: differential regulation of gene expression at the interface between innate and adaptive immunity. Curr Opin Immunol, 2003. 15(1): p. 52-8.
77. Le Bon, A. and D.F. Tough, Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol, 2002. 14(4): p. 432-6.
78. Fonteneau, J.F., et al., Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol, 2004. 78(10): p. 5223-32.
79. Albert, M.L., B. Sauter, and N. Bhardwaj, Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature, 1998. 392(6671): p. 86-9.
80. Jung, S., et al., In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity, 2002. 17(2): p. 211-20.
81. Schulz, O. and C. Reis e Sousa, Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology, 2002. 107(2): p. 183-9.
82. Desjardins, M., ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol, 2003. 3(4): p. 280-91.
83. Blachere, N.E., et al., Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med, 1997. 186(8): p. 1315-22.
84. Udono, H. and P.K. Srivastava, Comparison of tumor-specific immunogenicities of stress-induced proteins gp96, hsp90, and hsp70. J Immunol, 1994. 152(11): p. 5398-403.
85. Somersan, S., et al., Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol, 2001. 167(9): p. 4844-52.
86. Dunn, G.P., C.M. Koebel, and R.D. Schreiber, Interferons, immunity and cancer immunoediting. Nat Rev Immunol, 2006. 6(11): p. 836-48.
87. Zitvogel, L., A. Tesniere, and G. Kroemer, Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol, 2006. 6(10): p. 715-27.
88. Chouaib, S., et al., The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol Today, 1997. 18(10): p. 493-7.
89. Palucka, A.K., et al., Single injection of CD34+ progenitor-derived dendritic cell vaccine can lead to induction of T-cell immunity in patients with stage IV melanoma. J Immunother (1997), 2003. 26(5): p. 432-9.
90. van Mierlo, G.J., et al., CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci U S A, 2002. 99(8): p. 5561-6.
91. Melero, I., et al., Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther, 1999. 6(10): p. 1779-84.
92. Tirapu, I., et al., Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens. Int J Cancer, 2004. 110(1): p. 51-60.
93. Gri, G., et al., OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response. J Immunol, 2003. 170(1): p. 99-106.
94. Godelaine, D., et al., Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide. J Immunol, 2003. 171(9): p. 4893-7.
95. Vollmer, C.M., Jr., et al., Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res, 1999. 59(13): p. 3064-7.
96. Lee, W.C., et al., Effective treatment of small murine hepatocellular carcinoma by dendritic cells. Hepatology, 2001. 34(5): p. 896-905.
97. Tatsumi, T., et al., Administration of interleukin-12 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines in mouse hepatocellular carcinoma. Cancer Res, 2001. 61(20): p. 7563-7.
98. Tsung, K., et al., IL-12 induces T helper 1-directed antitumor response. J Immunol, 1997. 158(7): p. 3359-65.
99. Sgadari, C., A.L. Angiolillo, and G. Tosato, Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 1996. 87(9): p. 3877-82.
100. Sun, Y., et al., Gene transfer to liver cancer cells of B7-1 plus interleukin 12 changes immunoeffector mechanisms and suppresses helper T cell type 1 cytokine production induced by interleukin 12 alone. Hum Gene Ther, 2000. 11(1): p. 127-38.
101. Bennett, S.R., et al., Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature, 1998. 393(6684): p. 478-80.
102. Grewal, I.S. and R.A. Flavell, CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol, 1998. 16: p. 111-35.
103. Schmitz, V., et al., Adenovirus-mediated CD40 ligand gene therapy in a rat model of orthotopic hepatocellular carcinoma. Hepatology, 2001. 34(1): p. 72-81.
104. Tatsumi, T., et al., B7-1 (CD80)-gene transfer combined with interleukin-12 administration elicits protective and therapeutic immunity against mouse hepatocellular carcinoma. Hepatology, 1999. 30(2): p. 422-9.
105. Putzer, B.M., et al., Large nontransplanted hepatocellular carcinoma in woodchucks: treatment with adenovirus-mediated delivery of interleukin 12/B7.1 genes. J Natl Cancer Inst, 2001. 93(6): p. 472-9.
106. Dranoff, G., et al., Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3539-43.
107. Wang, J., et al., Transgenic expression of granulocyte-macrophage colony-stimulating factor induces the differentiation and activation of a novel dendritic cell population in the lung. Blood, 2000. 95(7): p. 2337-45.
108. Tazi, A., et al., Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Invest, 1993. 91(2): p. 566-76.
109. Tai, K.F., et al., Concurrent delivery of GM-CSF and endostatin genes by a single adenoviral vector provides a synergistic effect on the treatment of orthotopic liver tumors. J Gene Med, 2003. 5(5): p. 386-98.
110. Chang, C.J., et al., Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology, 2007. 45(3): p. 746-54.
111. Takayama, T., et al., Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet, 2000. 356(9232): p. 802-7.
112. Morgan, R.A., et al., Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 2006. 314(5796): p. 126-9.
113. Chen, H., J.O. Egan, and J.F. Chiu, Regulation and activities of alpha-fetoprotein. Crit Rev Eukaryot Gene Expr, 1997. 7(1-2): p. 11-41.
114. Deutsch, H.F., Chemistry and biology of alpha-fetoprotein. Adv Cancer Res, 1991. 56: p. 253-312.
115. Meng, W.S., et al., alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res, 2001. 61(24): p. 8782-6.
116. Grimm, C.F., et al., Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology, 2000. 119(4): p. 1104-12.
117. Hanke, P., et al., DNA vaccination with AFP-encoding plasmid DNA prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Ther, 2002. 9(4): p. 346-55.
118. Frolov, I., et al., Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A, 1996. 93(21): p. 11371-7.
119. Ryman, K.D., et al., Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol, 2002. 15(1): p. 53-76.
120. Sawicki, D., et al., Temperature sensitive shut-off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4. Virology, 1990. 174(1): p. 43-52.
121. Strauss, J.H. and E.G. Strauss, The alphaviruses: gene expression, replication, and evolution. Microbiol Rev, 1994. 58(3): p. 491-562.
122. Hahn, C.S., et al., Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc Natl Acad Sci U S A, 1992. 89(7): p. 2679-83.
123. Frolov, I. and S. Schlesinger, Translation of Sindbis virus mRNA: effects of sequences downstream of the initiating codon. J Virol, 1994. 68(12): p. 8111-7.
124. Asselin-Paturel, C., et al., Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol, 2001. 2(12): p. 1144-50.
125. Hornung, V., et al., Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol, 2004. 173(10): p. 5935-43.
126. Hidmark, A.S., et al., Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J Virol, 2005. 79(16): p. 10376-85.
127. Ryman, K.D., et al., Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol, 2000. 74(7): p. 3366-78.
128. Ryman, K.D., et al., Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol, 2005. 79(3): p. 1487-99.
129. Ying, H., et al., Cancer therapy using a self-replicating RNA vaccine. Nat Med, 1999. 5(7): p. 823-7.
130. Leitner, W.W., et al., Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res, 2000. 60(1): p. 51-5.
131. Leitner, W.W., et al., Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways. Nat Med, 2003. 9(1): p. 33-9.
132. Gao, B., et al., Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity, 2002. 16(1): p. 99-109.
133. Gardai, S.J., et al., Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005. 123(2): p. 321-34.
134. Cheng, W.F., et al., Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest, 2001. 108(5): p. 669-78.
135. Pike, S.E., et al., Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med, 1998. 188(12): p. 2349-56.
136. O'Reilly, M.S., et al., Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med, 1996. 2(6): p. 689-92.
137. O'Reilly, M.S., et al., Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 1997. 88(2): p. 277-85.
138. Obeid, M., et al., Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med, 2007. 13(1): p. 54-61.
139. Cheng, W.F., et al., Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity. Cancer Gene Ther, 2006. 13(9): p. 873-85.
140. Lee, J.S. and S.S. Thorgeirsson, Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology, 2004. 127(5 Suppl 1): p. S51-5.
141. Buendia, M.A., Genetics of hepatocellular carcinoma. Semin Cancer Biol, 2000. 10(3): p. 185-200.
142. Tseng, J.C., et al., Restricted tissue tropism and acquired resistance to Sindbis viral vector expression in the absence of innate and adaptive immunity. Gene Ther, 2007.
143. Tseng, J.C., et al., In vivo antitumor activity of Sindbis viral vectors. J Natl Cancer Inst, 2002. 94(23): p. 1790-802.
144. Tseng, J.C., et al., Systemic tumor targeting and killing by Sindbis viral vectors. Nat Biotechnol, 2004. 22(1): p. 70-7.
145. Linge, C., et al., Interferon system defects in human malignant melanoma. Cancer Res, 1995. 55(18): p. 4099-104.
146. Sun, W.H., et al., Interferon-alpha resistance in a cutaneous T-cell lymphoma cell line is associated with lack of STAT1 expression. Blood, 1998. 91(2): p. 570-6.
147. Stojdl, D.F., et al., VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell, 2003. 4(4): p. 263-75.
148. Li, M.O., et al., Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol, 2006. 24: p. 99-146.
149. Wan, Y.Y. and R.A. Flavell, Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci U S A, 2005. 102(14): p. 5126-31.
150. Bellone, G., et al., Regulation of NK cell functions by TGF-beta 1. J Immunol, 1995. 155(3): p. 1066-73.
151. Chang, H.L., et al., Increased transforming growth factor beta expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells. Cancer Res, 1993. 53(18): p. 4391-8.
152. Stander, M., et al., Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther, 1998. 5(9): p. 1187-94.
153. Fakhrai, H., et al., Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A, 1996. 93(7): p. 2909-14.
154. Friese, M.A., et al., RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res, 2004. 64(20): p. 7596-603.
155. Torre-Amione, G., et al., A highly immunogenic tumor transfected with a murine transforming growth factor type beta 1 cDNA escapes immune surveillance. Proc Natl Acad Sci U S A, 1990. 87(4): p. 1486-90.
156. Gorelik, L. and R.A. Flavell, Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med, 2001. 7(10): p. 1118-22.
157. Nishikawa, H., et al., Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9253-7.
158. Onizuka, S., et al., Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res, 1999. 59(13): p. 3128-33.
159. Sutmuller, R.P., et al., Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med, 2001. 194(6): p. 823-32.
160. Chen, M.L., et al., Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci U S A, 2005. 102(2): p. 419-24.
161. Ormandy, L.A., et al., Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res, 2005. 65(6): p. 2457-64.
162. Beyer, M., et al., Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood, 2005. 106(6): p. 2018-25.
163. Hori, S., T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003. 299(5609): p. 1057-61.
164. Fontenot, J.D., M.A. Gavin, and A.Y. Rudensky, Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol, 2003. 4(4): p. 330-6.
165. Nakamura, K., A. Kitani, and W. Strober, Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med, 2001. 194(5): p. 629-44.
166. Chen, W., et al., Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med, 2003. 198(12): p. 1875-86.
167. Curiel, T.J., et al., Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med, 2003. 9(5): p. 562-7.
168. Chen, L., Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol, 2004. 4(5): p. 336-47.
169. Brown, J.A., et al., Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol, 2003. 170(3): p. 1257-66.
170. Iwai, Y., et al., Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A, 2002. 99(19): p. 12293-7.
171. Iwai, Y., S. Terawaki, and T. Honjo, PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol, 2005. 17(2): p. 133-44.
172. Kuroda, E., et al., Prostaglandin E2 up-regulates macrophage-derived chemokine production but suppresses IFN-inducible protein-10 production by APC. J Immunol, 2001. 166(3): p. 1650-8.
173. Beissert, S., A. Schwarz, and T. Schwarz, Regulatory T cells. J Invest Dermatol, 2006. 126(1): p. 15-24.
174. Gabrilovich, D.I., et al., Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res, 1999. 5(10): p. 2963-70.
175. Zou, W., et al., Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med, 2001. 7(12): p. 1339-46.
176. Ueno, T., et al., Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res, 2000. 6(8): p. 3282-9.
177. Wang, T., et al., Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med, 2004. 10(1): p. 48-54.
178. Mohr, L., et al., Cationic liposome-mediated gene delivery to the liver and to hepatocellular carcinomas in mice. Hum Gene Ther, 2001. 12(7): p. 799-809.
179. Hirano, T., et al., HVJ-liposome-mediated transfection of HSVtk gene driven by AFP promoter inhibits hepatic tumor growth of hepatocellular carcinoma in SCID mice. Gene Ther, 2001. 8(1): p. 80-3.
180. Levine, B., et al., Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature, 1993. 361(6414): p. 739-42.
181. Kim, T.W., et al., Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res, 2005. 65(1): p. 309-16.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29842-
dc.description.abstract肝癌是遍及世界且是最致命的疾病之一,每年世界上約有一百二十五萬人因為罹患肝癌而死亡,大部分的肝細胞癌發展自因為B型、C型肝炎病毒慢性感染或酒精濫用所造成的慢性肝炎與肝硬化。肝臟移植是目前治療肝癌較理想的選擇但不是一個普及的治療方法,因為器官來源有限且只限於符合移植條件的少數病人且無法解決肝癌的復發,外科手術可切除腫瘤但也不能解決肝癌復發的問題。另外酒精注射或是動脈栓塞手術只有緩解病情的效果。加上傳統化療與放射線療法治療效果不佳,所以肝癌存活率很低,當前需要發展出治療肝癌的新策略。
在這個實驗中,我打算建立Sindbis viral vector攜帶肝腫瘤之抗原基因,甲型胎兒蛋白(AFP)基因,對帶有多發性肝腫瘤的老鼠進行免疫治療。該病毒載體已證實比傳統DNA載體疫苗更能打破對自體抗原的免疫耐受性與活化更多腫瘤相關抗原的免疫反應。利用CMV啟動子所調控的replicon載體攜帶非結構基因與吾人有趣的基因與另一個helper replicon攜帶結構基因同時以磷酸鈣沈澱法將其送入293T細胞,製造出高量的病毒顆粒。接下來將攜帶CRT、rAFP與CRT-rAFP基因的病毒顆粒感染BHK細胞後,以西方墨點法證明其在感染細胞中可表現CRT、rAFP與CRT-rAFP基因。另外學長建構的GM-CSF與IL-12載體產生的病毒感染BHK細胞後,也可以ELISA證明其表現能力。
在老鼠模式部分,我們於飲水中加入DENA可誘發Wistar大鼠產生多發性肝癌。首先,以RT-PCR證明此肝癌會表現AFP。隨後,我們以攜帶CRT-rAFP的Sindbis病毒並合併攜帶細胞激素GM-CSF或IL-12的Sindbis病毒,以肌肉內注射來治療此肝癌。以每隻大鼠的MTBI值或是腫瘤種體積(total tumor volume)來量化腫瘤的生長與衡量治療的效果。結果顯示CRT病毒治療效果與CRT-rAFP或CRT-rAFP合併GM-CSF或CRT-rAFP合併IL-12的治療效果差不多。儘管以免疫組織染色在CRT-rAFP合併GM-CSF或CRT-rAFP合併IL-12治療組可以看到較多的腫瘤滲入淋巴球(tumor infiltrate lymphocyte),但是推測活化出的免疫反應太弱以致於無法在CRT病毒產生之療效外再產生加成性的效果。另外以ELISA測量大鼠血清內IL-12濃度來分析IL-12載體病毒在活體內的表現,發現施打疫苗第二天之後表現迅速大幅下降,一週後即使再施打一次病毒,IL-12表現量遠不如第一次施打後的表現量。而只有在CRT-rAFP+IL-12治療組有看到誘發出微量的IFN-γ。推測施打第一次Sindbis病毒後,老鼠會對Sindbis病毒產生免疫力因而限制了下次病毒施打的治療成效。未來可改變治療的策略。例如以病毒DNA載體合併CRT-rAFP、GM-CSF和IL-12在腫瘤內做重複的施打,另外發現腫瘤內有免疫抑制因子包括FoxP3與TGF-β的表現,將來除了更加強正向的活化免疫反應的力道之外,另外也需注意並想辦法減少腫瘤內或腫瘤附近的免疫抑制因子,來達到最好的治療效果。
zh_TW
dc.description.abstractHepatocellular carcinoma is one of the most common malignancies worldwide. The annual number of mortalities from HCC worldwide is estimated at 1,250,000. Most of the cases, this malignant tumor develops on a background of chronic hepatitis and cirrhosis caused by chronic hepatitis B and C viral infection or alcohol abuse. Liver transplantation epitomizes a radical treatment option, but it is not applicable universally because limited organ donations and the occurrence of relapse and only when patients meet stringent specific criteria. Surgical resection removes large tumors, which is associated with high risk of relapse. Ethanol injection, arterial embolization are mainly performed with palliative intent. Conventional chemotherapy or radiotherapy is ineffective for HCC. The survival rate of individuals with HCC is low. There is an urgent need for creating new effective therapeutic strategies for HCC.
In this study, we attempted to treat a multifocal liver tumor model with a Sindbis viral vaccine which expresses the liver tumor antigen, α-fetoprotein(AFP). Previously, our laboratory has constructed a DNA-based Sindbis viral vector system. The system consists of a replicon vector, encoding the viral nonstructural genes and the gene of interest and a helper vector, encoding the viral structural genes, both of which were driven by the CMV promoter. The two DNA vectors were co-transfected into 293T cells by calcium phosphate method to obtain high titer of viral particles, which can infect cells once. Next, the recombinant viral particles were used to infect BHK cells. Western blot analysis indicated that these viral particles, including CRT, rAFP, and CRT-rAFP dsin/c, could express the encoded genes respectively in the infected cells. ELISA was also performed to prove the expression of GM-CSF and IL-12 from the viral vector in infected BHK cells.
Expression of AFP in the DENA induced hepatocellular carcinoma was proven by RT-PCR. Next, we applied the Sindbis virus carrying an AFP gene conjugated with a calreticulin gene in combination with GM-CSF or IL-12-carrying Sindbis virus for the treatment of DENA-induced spontaneous hepatocellular carcinoma in Wistar rat by intramuscular administration. The tumor growth for each rat was evaluated by modified tumor burden index (MTBI) and total tumor volume to indicate the therapeutic effect. The results show that CRT-dsin/c virus and CRT-rAFP+cytokine viruses generated almost the same therapeutic effect, notwithstanding that CRT-rAFP+cytokine dsin/c co-administration could recruit more tumor infiltrating lymphocytes, examined by immunohistochemistry. The data suggested that the anti-tumor immunity elicited by CRT-AFP or CRT-AFP+cytokine might be too weak to augment the therapeutic effect of CRT dsin/c virus. In vivo expression of the transduced gene was analyzed by ELISA of serum IL-12 levels. It is found that in vivo expression of Sindbis virus decreased enormously 2 days after the first immunization, and that the expression level of the second round immunization taking place 7 days later was far below the first immunization. A low level of serum IFN-γ was induced only in the CRT-rAFP+IL-12 group.
Therefore, we predicted that the animals might induce immunity to resist the second Sindbis virus infection thus limiting the therapeutic effect of the second immunization. To prolong the effects, one may need to modify the vaccination protocol by repeated injecting Sindbis “DNA” vector in combination with CRT-rAFP, GM-CSF, or IL-12-expressing vector DNA to elicit more effective immunity against the carcinogen-induced multifocal tumor. Furthermore, expression of immunosuppressive factors, such as FoxP3 and TGF-β, was also observed in this tumor model. As a result, in addition to enhance the anti-tumor immunity, the counter activity of the immunosuppressive factors should also be taken into consideration in order to achieve the maximal therapeutic effects.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:21:13Z (GMT). No. of bitstreams: 1
ntu-96-R94445111-1.pdf: 1633650 bytes, checksum: 12f89f5f6d851dab6f280dac22c82698 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要---------------------------------------------------------------I
英文摘要-------------------------------------------------------------III
目錄-------------------------------------------------------------------V
圖目錄--------------------------------------------------------------VIII
緒論-------------------------------------------------------------------1
一、肝細胞腫瘤---------------------------------------------------------1
二、基因療法於腫瘤治療上的應用-----------------------------------------2
(1)抗血管新生療法-------------------------------------------------2
(2)促腫瘤凋亡療法-------------------------------------------------3
(3)oncolytic virus療法-------------------------------------------3
(4)前趨藥物活化基因療法-------------------------------------------4
(5)siRNA促使降低基因表現-----------------------------------------5
(6)免疫療法-------------------------------------------------------5
腫瘤免疫監控------------------------------------------------------5
免疫療法的應用----------------------------------------------------9
a.樹突狀細胞疫苗免疫療法----------------------------------------9
b.腫瘤疫苗配合免疫活化輔助因子療法-----------------------------10
c.將活化的T細胞過繼移植免疫療法--------------------------------11
三、活化腫瘤相關抗原-AFP的肝癌免疫治療-------------------------------11
四、Sindbis載體發展與在腫瘤基因治療上的------------------------------14
(1)Sidbis virus的介紹-------------------------------------------14
(2)Sidbis virus載體---------------------------------------------15
(3) Sindbis病毒載體在免疫治療上的應用---------------------------17
五、Calreticulin與基因治療-------------------------------------------18
六、研究目的----------------------------------------------------------20
材料及方法------------------------------------------------------------21
一、細胞株培養----------------------------------------------------------21
二、構築反轉錄病毒載體S2-mAFP------------------------------------------21
三、S2-AFP-IRES-Neo載體轉染和表現AFP細胞株的篩選----------------------22
四、以PCR檢查S2-AFP-IRES-Neo載體的正確性-----------------------------23
五,Wistar大鼠肝癌模式的建立------------------------------------------24
六、以RT-PCR證實以DENA誘發的肝癌AFP的表現--------------------------24
七、構築Sindbis virus based rAFP、CRT-rAFP、CRT質體------------------25
八、證明Sindbis載體病毒在感染的細胞中表現攜帶的基因------------------27
(1)以磷酸鈣沉澱法轉染293T細胞來製作Sindbis病毒----------------28
(2)Sindbis病毒的定量--------------------------------------------28
(3)以重組Sindbis病毒感染BHK細胞並分析載體所攜帶基因之表現------28
a.以西方墨點法分析Sindbis載體病毒在感染細胞中表現---------------------28
b.以ELISA證明dsin/c-GM-CSF與dsin/c-IL-12病毒在感染細胞中表----------29
九、證明dsin/c-CRT與dsin/c-CRT-mAFP在活體內有抑制內皮細胞的活性------30
十、Wistar大鼠肝癌治療模式與治療後腫瘤的量化--------------------------31
十一、檢查dsin/c-IL-12疫苗在老鼠體內的表現----------------------------31
十二、檢查疫苗在老鼠體內所誘發的IFN-γ--------------------------------31
十三、為治療完的老鼠測量血清中的GOT、GPT、γGT------------------------32
十四、以免疫組織染色分析腫瘤組織---------------------------------------32
十五、在治療後對大鼠腫瘤進行RT-PCR------------------------------------33
(1)分析腫瘤與疫苗注射處肌肉AFP RNA--------------------------------33
(2)分析腫瘤immuno-suppressor的存在-------------------------------33
結果
一、建立一個會表現AFP的小鼠細胞株------------------------------------35
二、大鼠肝癌模式的建立與治療------------------------------------------35
(1)大鼠疫苗的建構與表現--------------------------------------------36
(2)大鼠治療--------------------------------------------------------36
(3)分析腫瘤浸潤免疫細胞與測量血清中IFN-γ評估疫苗的免疫活化效果---37
(4)大鼠治療後分析腫瘤AFP的表現-----------------------------------37
(5)大鼠治療後分析腫瘤內的immunosuppressor--------------------------37
三、病毒疫苗在活體內的表現----------------------------------------------38
四、CRT Sindbis病毒具有抑制內皮細胞功能因而達到抑制腫瘤生長的效果------38
討論-------------------------------------------------------------------39
未來展望--------------------------------------------------------------45
參考文獻--------------------------------------------------------------46
附圖------------------------------------------------------------------63
附錄------------------------------------------------------------------93
dc.language.isozh-TW
dc.title以Sindbis病毒攜帶腫瘤抗原基因對肝腫瘤進行免疫治療研究zh_TW
dc.titleImmunotherapy of Hepatocellular Carcinoma by Sindbis Viral Vector-mediated Vaccination of Tumor Associated Antigenen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賈景山(Jean-San Chia),陳小梨(Show-Li Chen),王萬波(Won-Bo Wang)
dc.subject.keyword免疫治療,甲型胎兒蛋白,肝癌,zh_TW
dc.subject.keywordSindbis virus,immunotherapy,alpha-fetoprotein,calreticulin,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2007-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved