Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張智芬
dc.contributor.authorWen-Ling Chouen
dc.contributor.author周玟伶zh_TW
dc.date.accessioned2021-06-13T01:18:55Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-19
dc.identifier.citation[1] E.E. Kershaw, J.S. Flier. (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89, 2548-2556.
[2] P. Trayhurn. (2005) Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 184, 285-293.
[3] H. Green, M. Meuth. (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3, 127-133.
[4] A.B. Chapman, D.M. Knight, B.S. Dieckmann, G.M. Ringold. (1984) Analysis of gene expression during differentiation of adipogenic cells in culture and hormonal control of the developmental program. J Biol Chem 259, 15548-15555.
[5] R. Negrel, P. Grimaldi, G. Ailhaud. (1978) Establishment of a preadipocyte clonal cell line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. Proc Natl Acad Sci USA 75, 6054-6058.
[6] F.M. Gregoire, C.M. Smas, H.S. Sul. (1998) Understanding adipocyte differentiation. Physiol Rev 78, 783-809.
[7] J. Pairault, H. Green. (1979) A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydroenase as a differentiation marker. . Proc Natl Acad Sci USA 76, 5138-5142.
[8] W.C. Yeh, B.E. Bierer, S.L. McKnight. (1995) Rapamycin inhibits clonal expansion and adipogenic differentiation of 3T3-L1 cells. Proc Natl Acad Sci USA 92, 11086-11090.
[9] M. Reichert, D. Eick. (1999) Analysis of cell cycle arrest in adipocyte differentiation. Oncogene 18, 459-466.
[10] Q.Q. Tang, M.D. Lane. (1999) Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 13, 2231-2241.
[11] R.E. Scott, D.L. Florine, J.J. Wille, Jr., K. Yun. (1982) Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. . Proc Natl Acad Sci USA 79, 845-849.
[12] R.F. Morrison, S.R. Farmer. (1999) Role of PPARg in regulating a cascade expression of cyclin-dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis. J Biol Chem 274, 17088-17097.
[13] D. Shao, M.A. Lazar. (1997) Peroxisome proliferator activated receptor-g, CCAAT/enhancer-binding protein-a, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 272, 21473-21478.
[14] P. Tontonoz, E. Hu, B.M. Spiegelman. (1994) Stimulation of adipogenesis in fibroblasts by PPARg2, a lipid-activated transcription factor. Cell 79, 1147-1156.
[15] Z. Cao, R.M. Umek, S.L. McKnight. (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5, 1538-1552.
[16] G.J. Darlington, S.E. Ross, O.A. MacDougald. (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273, 30057-30060.
[17] W.C. Yeh, Z. Cao, M. Classon, S.L. McKnight. (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 15, 168-181.
[18] T. Tanaka, N. Yoshida, T. Kishimoto, S. Akira. (1997) Defective adipocyte differentiation in mice lacking the C/EBP-b and/or the C/EBP-d gene. EMBO J 16, 7432-7443.
[19] Y. Zhu, C. Qi, J.R. Korenberg, X.N. Chen, D. Noya, M.S. Rao, J.K. Reddy. (1995) Structural organization of mouse peroxisome proliferator-activated receptor-g (mPPAR-g) gene: alternative promoter use and different splicing yield two mRNA PPAR-g isoforms. Proc Natl Acad Sci USA 92, 7921-7925.
[20] L. Fajas, J.C. Fruchart, J. Auwerx. (1998) PPARg3 mRNA: a distinct PPARg mRNA subtype transcribed from an independent promoter. FEBS Lett 438, 55-60.
[21] P. Tontonoz, E. Hu, R.A. Graves, A.I. Budavari, B.M. Spiegelman. (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes & Dev 8, 1224-1234.
[22] Y. Barak, M.C. Nelson, E.S. Ong, Y.Z. Jones, P. Ruiz-Lozano, K.R. Chien, A. Koder, R.M. Evans. (1999 ) PPARg is required for placental, cardiac, and adipose tissue development. Mol Cell 4, 585-595.
[23] T.Y. Kubota N, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T, Eto K, Tsubamoto Y, Okuno A, Murakami K, Sekihara H, Hasegawa G, Naito M, Toyoshima Y, Tanaka S, Shiota K, Kitamura T, Fujita T, Ezaki O, Aizawa S, Kadowaki T. (1999) PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 4, 597-609.
[24] E.D. Rosen, P. Sarraf, A.E. Troy, G. Bradwin, K. Moore, D.S. Milstone, B.M. Spiegelman, R.M. Mortensen. (1999) PPARg is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4, 611-617.
[25] E.D. Rosen, O.A. MacDougald. (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7, 885-896.
[26] D. Ren, T.N. Collingwood, E.J. Rebar, A.P. Wolffe, H.S. Camp. (2002) PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes Dev 16, 27-32.
[27] E. Mueller, S. Drori, A. Aiyer, J. Yie, P. Sarraf, H. Chen, S. Hauser, E.D. Rosen, K. Ge, R.G. Roeder, B.M. Spiegelman. (2002) Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor g isoforms. J Biol Chem 277, 41925-41930.
[28] J. Zhang, M. Fu, T. Cui, C. Xiong, K. Xu, W. Zhong, Y. Xiao, D. Floyd, J. Liang, E. Li, Q. Song, Y.E. Chen. (2004) Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A 101, 10703-10708.
[29] G. Medina-Gomez, S. Virtue, C. Lelliott, R. Boiani, M. Campbell, C. Christodoulides, C. Perrin, M. Jimenez-Linan, M. Blount, J. Dixon, D. Zahn, R.R. Thresher, S. Aparicio, M. Carlton, W.H. Colledge, M.I. Kettunen, T. Seppanen-Laakso, J.K. Sethi, S. O'Rahilly, K. Brindle, S. Cinti, M. Oresic, R. Burcelin, A. Vidal-Puig. (2005) The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform. Diabetes 54, 1706-1716.
[30] E.D. Rosen, C.J. Walkey, P. Puigserver, B.M. Spiegelman. (2000) Transcriptional regulation of adipogenesis. Genes Dev 14, 1293-1307.
[31] Z. Wu, E.D. Rosen, R. Brun, S. Hauser, G. Adelmant, A.E. Troy, C. McKeon, G.J. Darlington, B.M. Spiegelman. (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3, 151-158.
[32] S.O. Freytag, D.L. Paielli, J.D. Gilbert. (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8, 1654-1663.
[33] E.D. Rosen, C.H. Hsu, X. Wang, S. Sakai, M.W. Freeman, F.J. Gonzalez, B.M. Spiegelman. (2002) C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev 16, 22-26.
[34] J.B. Kim, B.M. Spiegelman. (1996) ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10, 1096-1107.
[35] L. Fajas, K. Schoonjans, L. Gelman, J.B. Kim, J. Najib, G. Martin, J.C. Fruchart, M. Briggs, B.M. Spiegelman, J. Auwerx. (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 19, 5495-5503.
[36] J.B. Kim, H.M. Wright, M. Wright, B.M. Spiegelman. (1998) ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci U S A 95, 4333-4337.
[37] P.J. Smith, L.S. Wise, R. Berkowitz, C. Wan, C.S. Rubin. (1988) Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263, 9402-9408.
[38] J.M. Joyner, L.J. Hutley, D.P. Cameron. (2000) Glucocorticoid receptors in human preadipocytes: regional and gender differences. J Endocrinol 166, 145-152.
[39] Z. Wu, N.L. Bucher, S.R. Farmer. (1996) Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 16, 4128-4136.
[40] H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, J.S. Flier. (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166-2170.
[41] P.M. Stewart, J.W. Tomlinson. (2002) Cortisol, 11 beta-hydroxysteroid dehydrogenase type 1 and central obesity. Trends Endocrinol Metab 13, 94-96.
[42] D.E. Livingstone, G.C. Jones, K. Smith, P.M. Jamieson, R. Andrew, C.J. Kenyon, B.R. Walker. (2000) Understanding the role of glucocorticoids in obesity: tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 141, 560-563.
[43] E. Rask, T. Olsson, S. Soderberg, R. Andrew, D.E. Livingstone, O. Johnson, B.R. Walker. (2001) Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 86, 1418-1421.
[44] D. Gaillard, R. Negrel, M. Lagarde, G. Ailhaud. (1989) Requirement and role of arachidonic acid in the differentiation of pre-adipose cells. Biochem J 257, 389-397.
[45] J. Aubert, P. Saint-Marc, N. Belmonte, C. Dani, R. Negrel, G. Ailhaud. (2000) Prostacyclin IP receptor up-regulates the early expression of C/EBPbeta and C/EBPdelta in preadipose cells. Mol Cell Endocrinol 160, 149-156.
[46] R.P. Brun, P. Tontonoz, B.M. Forman, R. Ellis, J. Chen, R.M. Evans, B.M. Spiegelman. (1996) Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 10, 974-984.
[47] S.A. Kliewer, J.M. Lenhard, T.M. Willson, I. Patel, D.C. Morris, J.M. Lehmann. (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor g and promotes adipocyte differentiation. Cell 83, 813-819.
[48] B.M. Forman, P. Tontonoz, J. Chen, R.P. Brun, B.M. Spiegelman, R.M. Evans. (1995) 15-Deoxy-D12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARg. Cell 83, 803-812.
[49] L.C. Bell-Parikh, T. Ide, J.A. Lawson, P. McNamara, M. Reilly, G.A. FitzGerald. (2003) Biosynthesis of 15-deoxy-D12,14-PGJ2 and the ligation of PPARg. J Clin Invest 112, 945-955.
[50] B. Feve. (2005) Adipogenesis: cellular and molecular aspects. Best Pract Res Clin Endocrinol Metab 19, 483-499.
[51] M. Suzawa, I. Takada, J. Yanagisawa, F. Ohtake, S. Ogawa, T. Yamauchi, T. Kadowaki, Y. Takeuchi, H. Shibuya, Y. Gotoh, K. Matsumoto, S. Kato. (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5, 224-230.
[52] H. Xu, J. Hirosumi, K.T. Uysal, A.D. Guler, G.S. Hotamisligil. (2002) Exclusive action of transmembrane TNF alpha in adipose tissue leads to reduced adipose mass and local but not systemic insulin resistance. Endocrinology 143, 1502-1511.
[53] S.P. Weisberg, McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., and Ferrante, A. W. J. (2003) Obesity is associated with macrophage accumulation in adipose tissue. 112, 1796-1808.
[54] S.E. Ross, N. Hemati, K.A. Longo, C.N. Bennett, P.C. Lucas, R.L. Erickson, O.A. MacDougald. (2000) Inhibition of adipogenesis by Wnt signaling. Science 289, 950-953.
[55] A.M. Vertino, J.M. Taylor-Jones, K.A. Longo, E.D. Bearden, T.F. Lane, R.E. McGehee, Jr., O.A. MacDougald, C.A. Peterson. (2005) Wnt10b deficiency promotes coexpression of myogenic and adipogenic programs in myoblasts. Mol Biol Cell 16, 2039-2048.
[56] K.A. Longo, W.S. Wright, S. Kang, I. Gerin, S.H. Chiang, P.C. Lucas, M.R. Opp, O.A. MacDougald. (2004) Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 279, 35503-35509.
[57] L. Choy, J. Skillington, R. Derynck. (2000) Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 149, 667-682.
[58] D.E. Clouthier, S.A. Comerford, R.E. Hammer. (1997) Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 100, 2697-2713.
[59] G. Serrero, N.M. Lepak, S.P. Goodrich. (1992) Paracrine regulation of adipose differentiation by arachidonate metabolites: prostaglandin F2 alpha inhibits early and late markers of differentiation in the adipogenic cell line 1246. Endocrinology 131, 2545-2551.
[60] D.A. Casimir, C.W. Miller, J.M. Ntambi. (1996) Preadipocyte differentiation blocked by prostaglandin stimulation of prostanoid FP2 receptor in murine 3T3-L1 cells. Differentiation 60, 203-210.
[61] M.J. Reginato, S.L. Krakow, S.T. Bailey, M.A. Lazar. (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J Biol Chem 273, 1855-1858.
[62] S.A. Kliewer, Forman, B. M., Blumberg, B., Ong, E. S., Borgmeyer, U., Mangelsdorf, D. J., Umesono, K., and Evans, R. M. (1994) Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 91, 7355-7359.
[63] N.M. Barak Y, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM. (1999 ) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4, 585-595.
[64] B.B. Lowell. (1999) PPARg: an essential regulator of adipogenesis and modulator of fat cell function. Cell 99, 239-242.
[65] S. Westin, R. Kurokawa, R.T. Nolte, G.B. Wisely, E.M. Mcinerney, D.W. Rose, M.V. Milburn, M.G. Rosenfeld, C.K. Glass. (1998) Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395, 199 - 202.
[66] B. Desvergne, W. Wahli. (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20, 649-688.
[67] R.T. Nolte, G.B. Wisely, S. Westin, J.E. Cobb, M.H. Lambert, R. Kurokawa, M.G. Rosenfeld, T.M. Willson, C.K. Glass, M.V. Milburn. (1998 ) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-g. Nature 395, 137-143.
[68] R.M. Evans, G.D. Barish, Y.X. Wang. (2004) PPARs and the complex journey to obesity. Nat Med 10, 355-361.
[69] M.A. Lazar, M. Lehrke. (2005) The many faces of PPARg. Cell 123, 993-999.
[70] J.M. Lehmann, L.B. Moore, T.A. Smith-Oliver, W.O. Wilkison, T.M. Willson, S.A. Kliewer. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor g (PPARg). J Biol Chem 270, 12953-12956.
[71] H. Yki-Jarvinen. (2004) Thiazolidinediones. N Engl J Med 351, 1106-1118.
[72] L. Nagy, P. Tontonoz, J.G. Alvarez, H. Chen, R.M. Evans. (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARg. Cell 93, 229-240.
[73] J.T. Huang, J.S. Welch, M. Ricote, C.J. Binder, T.M. Willson, C. Kelly, J.L. Witztum, C.D. Funk, D. Conrad, C.K. Glass. (1999) Interleukin-4-dependent production of PPAR-g ligands in macrophages by 12/15-lipoxygenase. Nature 400, 378-382.
[74] T.M. McIntyre, A.V. Pontsler, A.R. Silva, A. St. Hilaire, Y. Xu, J.C. Hinshaw, G.A. Zimmerman, K. Hama, J. Aoki, H. Arai, G.D. Prestwich. (2003) Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARg agonist. Proc Natl Acad Sci U S A 100, 131-136.
[75] F.J. Schopfer, Y. Lin, P.R.S. Baker, T. Cui, M. Garcia-Barrio, J. Zhang, K. Chen, Y.E. Chen, B.A. Freeman. (2005) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor g ligand. Proc Natl Acad Sci U S A 102, 2340-2345.
[76] T. Shibata, M. Kondo, T. Osawa, N. Shibata, M. Kobayashi, K. Uchida. (2002) 15-deoxy-D12,14-prostaglandin J2-a prostaglandin D2 metabolite generated during inflammatory processes. J Biol Chem 277, 10459-10466.
[77] I. Tzameli, H. Fang, M. Ollero, H. Shi, J.K. Hamm, P. Kievit, A.N. Hollenberg, J.S. Flier. (2004) Regulated production of a peroxisome proliferator-activated receptor-g ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J Biol Chem 279, 36093-36102.
[78] S.C. Rosen OM, Hirsch A, Lai E, Rubin CS. (1979) Recent studies of the 3T3-L1 adipocyte-like cell line. Recent Prog Horm Res 35, 477-499.
[79] C.M. Ensor, H. Zhang, H.H. Tai. (1998) Purification, cDNA cloning and expression of 15-oxoprostaglandin 13-reductase from pig lung. Biochem J 330, 103-108.
[80] T. Yokomizo, Y. Ogawa, N. Uozumi, K. Kume, T. Izumi, T. Shimizu. (1996) cDNA cloning, expression, and mutagenesis study of leukotriene B4 12-hydroxydehydrogenase. J Biol Chem 271, 2844-2850.
[81] S. Kitamura, H. Katsura, K. Tatsumi. (1996) Multiplicity of rat liver 15-ketoprostaglandin D13-reductases. Prostaglandins 52, 35-49.
[82] H.S. Hansen. (1979) Purification and characterization of a 15-ketoprostaglandin D13-reductase from bovine lung. Biochim Biophys Acta 574, 136-145.
[83] F.A. Fitzpatrick, W.F. Liggett, M.A. Wynalda. (1984) Albumin-eicosanoid interactions. J Biol Chem 259, 2722-2727.
[84] H.U. Bergmeyer. (1983) Determination of metabolic concentrations with end-point methods. In: Methods of enzymatic analysis., 3 ed.
[85] G. Michal, H. Mollering, J. Siedel. (1983) Chemical design of indicator reactions for the visible range. In: Methods of enzymatic analysis., 3 ed.
[86] T. Shivanandappa, S. Venkatesh. (1997) A colorimetric assay method for 3b-hydroxy-D5-steroid dehydrogenase. Anal Biochem 254, 57-61.
[87] P. Trinder. (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochim 6, 24-27.
[88] M.J. Eadie, J.H. Tryer, J.R. Kukums, W.D. Hooper. (1970) Aspects of terazolium salt reduction relevant to quantitative histochemistry. Histochemie 21, 170-180.
[89] H.H. Tai, C.M. Ensor, M. Tong, H. Zhou, F. Yan. (2002) Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat 68-69, 483-493.
[90] E. Anggard, C. Larsson, B. Samuelsson. (1971) The distribution of 15-hydroxy prostaglandin dehydrogenase and prostaglandin-D13-reductase in tissues of the swine. Acta Physiol Scand 81, 396-404.
[91] B.T. Hyman, L.L. Stoll, A.A. Spector. (1982) Prostaglandin production by 3T3-L1 cells in culture. Biochim Biophys Acta 713, 375-385.
[92] A. Chawla, E.J. Schwarz, D.D. Dimaculangan, M.A. Lazar. (1994) Peroxisome proliferator-activated receptor (PPAR) g: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 136, 798-800.
[93] S.E. Inzucchi, D.G. Maggs, G.R. Spollett, S.L. Page, F.S. Rife, V. Walton, G.I. Shulman. (1998) Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 338, 867-872.
[94] D.E. James, K.M. Burleigh, E.W. Kraegen. (1985) Time dependence of insulin action in muscle and adipose tissue in the rat in vivo. An increasing response in adipose tissue with time. Diabetes 34, 1049-1054.
[95] L. Chao, B. Marcus-Samuels, M.M. Mason, J. Moitra, C. Vinson, E. Arioglu, O. Gavrilova, M.L. Reitman. (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 106, 1221-1228.
[96] W. He, Y. Barak, A. Hevener, P. Olson, D. Liao, J. Le, M. Nelson, E. Ong, J.M. Olefsky, R.M. Evans. (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100, 15712-15717.
[97] A.W. Norris, L. Chen, S.J. Fisher, I. Szanto, M. Ristow, A.C. Jozsi, M.F. Hirshman, E.D. Rosen, L.J. Goodyear, F.J. Gonzalez, B.M. Spiegelman, C.R. Kahn. (2003) Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 112, 608-618.
[98] C.D. Funk. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875.
[99] D. Bishop-Bailey, and Wray, J. (2003) Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins & other lipid mediators 71, 1-22.
[100] B. Richelsen. (1991) Prostaglandins in adipose tissue--with special reference to triglyceride metabolism. Dan Med Bull 38, 228-244.
[101] C.K. Glass, M.G. Rosenfeld. (2000) The coregulators exchange in transcriptional functions of nuclear receptors. Genes & Dev 14, 121-141.
[102] J.K. Hamm, B.H. Park, S.R. Farmer. (2001) A role for C/EBPb in regulating peroxisome proliferator-activated receptor g activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 276, 18464-18471.
[103] D.W. Gilroy, P.R. Colville-Nash, D. Willis, J. Chivers, M.J. Paul-Clark, D.A. Willoughby. (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5, 698-701.
[104] J.N. Fain, A.K. Madan, M.L. Hiler, P. Cheema, S.W. Bahouth. (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273-2282.
[105] T. Shiraki, N. Kamiya, S. Shiki, T.S. Kodama, A. Kakizuka, H. Jingami. (2005) a, b-unsaturated ketone is a core moiety of natural ligands for covalent binding to peroxisome proliferator-activated receptor g. J Biol Chem 280, 14145-14153.
[106] T. Hori, T. Yokomizo, H. Ago, M. Sugahara, G. Ueno, M. Yamamoto, T. Kumasaka, T. Shimizu, M. Miyano. (2004) Structural basis of leukotriene B4 12-hydroxydehydrogenase/15-oxo-prostaglandin 13-reductase catalytic mechanism and a possible Src homology 3 domain binding loop. J Biol Chem 279, 22615-22623.
[107] E. Anggard. (1966) The biological activity of three metabolites of prostaglandin E1. Acta Physiol Scand 66, 509-510.
[108] J. Jarabak, J. Fried. (1979) Comparison of substrate specificities of the human placental NAD- and NADP-linked 15-hydroxyprostaglandin dehydrogenases. Prostaglandins 18, 241-246.
[109] Y.M. Lin, J. Jarabak. (1978) Isolation of two proteins with 9-ketoprostaglandin reductase and NADP-linked 15-hydroxyprostaglandin dehydrogenase activities and studies on their inhibition. Biochem Biophys Res Commun 81, 1227-1234.
[110] D.G. Chang, M. Sun, H.H. Tai. (1981) Prostaglandin 9-ketoreductase and type II 15-hydroxyprostaglandin dehydrogenase from swine kidney are alternate activities of a single enzyme protein. Biochem Biophys Res Commun 99, 745-751.
[111] B. Wermuth. (1981) Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J Biol Chem 256, 1206-1213.
[112] Y. Xie, X. Kang, W.E. Ackerman, M.A. Belury, C. Koster, B.H. Rovin, M.B. Landon, D.A. Kniss. (2006) Differentiation-dependent regulation of the cyclooxygenase cascade during adipogenesis suggests a complex role for prostaglandins. Diabetes Obes and Metab 8, 83-93.
[113] H.S. Camp, A. Chaudhry, T. Leff. (2001) A novel potent antagonist of peroxisome proliferator-activated receptor g blocks adipocyte differentiation but does not revert the phenotype of terminally differentiated adipocytes. Endocrinology 142, 3207-3213.
[114] L. Makowski, G.S. Hotamisligil. (2004) Fatty acid binding proteins—the evolutionary crossroads of inflammatory and metabolic responses. J Nutr 134, 2464S- 2468S.
[115] H. Bays, L. Mandarino, R.A. DeFronzo. (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89, 463-478.
[116] K. Schoonjans, J. Peinado-Onsurbe, A.M. Lefebvre, R.A. Heyman, M. Briggs, S. Deeb, B. Staels, J. Auwerx. (1996) PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J. 15, 5336-5348.
[117] B.I. Frohnert, T.Y. Hui, D.A. Bernlohr. (1999) Identification of a functional peroxisome proliferator-responsive element in the murine fatty acid transport protein gene. J Biol Chem 274, 3970-3977.
[118] H.P. Guan, Y. Li, M.V. Jensen, C.B. Newgard, C.M. Steppan, M.A. Lazar. (2002) A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat Med 8, 1122-1128.
[119] J. Tordjman, G. Chauvet, J. Quette, E.G. Beale, C. Forest, B. Antoine. (2003) Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 278, 18785-18790.
[120] P. Peraldi, M. Xu, B.M. Spiegelman. (1997) Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 100, 1863-1869.
[121] C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, H.R. Patel, R.S. Ahima, M.A. Lazar. (2001) The hormone resistin links obesity to diabetes. Nature 409, 307-312.
[122] N. Maeda, M. Takahashi, T. Funahashi, S. Kihara, H. Nishizawa, K. Kishida, H. Nagaretani, M. Matsuda, R. Komuro, N. Ouchi, H. Kuriyama, K. Hotta, T. Nakamura, I. Shimomura, Y. Matsuzawa. (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094-2099.
[123] S. Rocchi, F. Picard, J. Vamecq, L. Gelman, N. Potier, D. Zeyer, L. Dubuquoy, P. Bac, M.F. Champy, K.D. Plunket, L.M. Leesnitzer, S.G. Blanchard, P. Desreumaux, D. Moras, J.P. Renaud, J. Auwerx. (2001) A unique PPARgamma ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol Cell 8, 737-747.
[124] J.P. Berger, Petro, A. E., Macnaul, K. L., Kelly, L. J., Zhang, B. B., Richards, K., Elbrecht, A., Johnson, B. A., Zhou, G., Doebber, T. W., Biswas, C., Parikh, M., Sharma, N., Tanen, M., R., Thompson, G. M., Ventre, J., Adams, A. D., Mosley, R., Surwit, R. S. and Moller, D. E. (2003) Dinstinct properties and advantages of a novel peroxisome proliferator-activated protein g selective modulator. Mol Endocrinol 17, 662-676.
[125] H. Minoura, Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y., and Mutoh, S. (2004) Pharmacological characteristics of a novel nonthiazolidinediones insulin sensitizer, FK614. Eur J Biochem 494, 273-281.
[126] J.P. Berger, T.E. Akiyama, P.T. Meinke. (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26, 244-251.
[127] A. Soukas, P. Cohen, N.D. Socci, J.M. Friedman. (2000) Leptin-specific patterns of gene expression in white adipose tissue. Genes & Dev 14, 963-980.
[128] A. Vidal-Puig, M. Jimenez-Liñan, B.B. Lowell, A. Hamann, E. Hu, B. Spiegelman, J.S. Flier, D.E. Moller. (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Invest 97, 2553-2561.
[129] H. Xu, Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A., and Chen, H. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821-1830.
[130] G. Pascual, Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., Rose, D. W., Willson,T. M., Rosenfeld, M. G. & Glass, C. K. (2005) A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-g. Nature 437, 759-763.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29789-
dc.description.abstract3T3-L1 細胞株是一個研究脂肪細胞分化機制最常用的模式系統,本論文中,前列腺素還原酉每(PGR-2)最初是一個利用mRNA差異呈現法(differential display),被篩選出來的一個功能未知的基因;它是一個在3T3-L1 的脂肪細胞分化過程後期高度表現的基因,在組織的分布上,尤其在脂肪組織中具有特別高的表現。經過基因庫序列的比對分析,基因的選殖及其重組蛋白質的表現,酵素活性的測試,以及酵素反應產物的定性分析,從而證實此基因的表現具有催化15-keto prostaglandin E2 (15-keto-PGE2)還原成為13,14-dihydro-15-ketoprostaglandin E2的15-oxoprostaglandin- Δ13-reductase酵素活性,也因此將此基因定名為前列腺素還原酉每(PGR-2)。
前列腺素E2是一個半生期很短的活性小分子,其分解代謝先由
NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH)進行氧化反應產生15-keto-PGE2,再由NADPH/NADH-dependent 15-oxoprostaglandin-Δ13-reductase(PGR)進一步還原作用將15-keto-PGE2轉變為沒有活性的
13,14-dihydro-15-keto-PGE2。早期的研究發現脂肪組織具有高度的PGDH 與PGR之酵素活性,顯示前列腺素E2分解代謝在脂肪細胞中是旺盛的。
PPAR-γ 是一個在調控脂肪細胞分化上扮演重要角色的轉錄因子,在轉錄因子的分類上,它是屬於nuclear receptor的子家族成員,配體(ligand)對PPAR-γ的結合,使得轉錄輔抑制子從而脫離,並促使轉錄輔活化子返回與PPAR-γ結合,同時PPAR-γ藉由與retinoid X receptor (RXR)形成異二聚體才能進而活化其標的基因。目前臨床上治療糖尿病的藥物thiazolidinedione(TZD),即是一類化學合成的PPAR-γ高親合性配體;過去一些天然的化學分子已被報導為潛在的內生性PPAR-γ的配體,但在生理上這些配體是否確實活化PPAR-γ則仍然沒有定論,有趣的是這些天然的化學分子往往伴隨不同的發炎刺激而產生,這與PPAR-γ日益明朗的抗發炎角色呈現正相關性。前列腺素E2的生成在許多發炎反應中皆會明顯增加,然而其代謝是否與調節PPAR-γ活性有關仍屬未知的議題。
本論文中,在3T3-L1 的細胞分化前期額外表現PGR-2 蛋白質時,脂肪細胞的分化明顯被抑制,但卻不影響分化前期PPAR-γ蛋白質的表現;然後,我進一步發現15-keto-PGE2是一個PPAR-γ的配體,藉由增進PPAR-γ與轉錄輔活化子的結合,而活化PPAR-γ的轉錄功能,使其能有效促進PPAR-γ標的基因的表現,與3T3-L1 的脂肪細胞分化;在293T細胞中,以轉染實驗表現PGR-2 蛋白質,的確能夠抑制15-keto-PGE2所引發的PPAR-γ的轉錄活化,反之,以轉染實驗表現前列腺素脫氫酉每15-hydroxyprostaglandin dehydrogenase (PGDH)蛋白質,使其氧化PGE2成為15-keto-PGE2,的確能夠促進PPAR-γ的轉錄活化。因此,根據以上的研究成果,我們認為細胞內PGE2的分解代謝,在調節PPAR-γ的轉錄活化的機制中,可能扮演一個重要的角色。
zh_TW
dc.description.abstract3T3-L1 preadipocyte cell line has been used as a model for characterizing the events responsible for adipocyte differentiation. In this thesis, we used differential display to identify a novel gene, encoding prostaglandin reductase designated as PGR-2, in the beginning. Its expression pattern is abundant in adipose tissues and highly up-regulated in the late phase of 3T3-L1 adipocyte differentiation. By functional characterization, we found that PGR-2 is capable of converting 15-keto-PGE2 into 13,14-dihydro-15-keto-PGE2.
PGE2, a short lived mediator, is catabolized via an oxidation reaction catalyzed by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) for the generation of 15-keto-PGE2, which is further catabolized by a reduction reaction catalyzed by NADPH/NADH-dependent 15-oxoprostaglandin-Δ13-reductase (PGR). It has been shown that adipose tissue possesses high activity of both PGDH and PGR, indicating that PGE2 catabolism is highly active in adipocytes.
Peroxisome proliferator-activated receptor γ (PPAR-γ) plays important roles in adipogenesis. PPAR-γ is a ligand-dependent transcription factor that belongs to the nuclear receptor family, activating the transcription of its target genes as heterodimers with retinoid X receptor (RXR). Upon ligand binding, PPAR-γreleases bound corepressors and recruits coactivator for transcriptional activation. Thiazolidinediones (TZDs) are high-affinity synthetic agonists which have been widely used as insulin-sensitizing agents to treat type 2 diabetes. Several natural substances have been identified as potential endogenous PPAR-γ ligands. To date, their physiological significance and role as true endogenous activators for PPAR-γ have been uncertain. Interestingly, these identified ligands are usually associated with different inflammatory stimuli, which correlate with the anti-inflammatory role of PPAR-γ. The production of prostaglandin E2 (PGE2) is elevated in many inflammatory stimuli. However, little is known about whether the catabolism of PGE2 is associated with modulation of PPAR-γactivity.
In this thesis, enforced expression of PGR-2 represses transcriptional activity of PPAR-γand adipocyte differentiation of 3T3-L1 cells. Following these observations, we further found that 15-keto-PGE2, an intermediate metabolite within the PGE2 catabolic pathway, functions as a PPAR-γ ligand, by which it stimulates the differentiation of mouse fibroblasts into adipocytes. In accordance, overexpression of PGDH also increased PGE2-dependent activation of PPAR-γ. Our findings provide new insights into PGE2 catabolism in regulation of PPAR-γactivity.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:18:55Z (GMT). No. of bitstreams: 1
ntu-96-D90442002-1.pdf: 3443618 bytes, checksum: 11f7a9a78fd793dafe273a134356b511 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
中文摘要 IV
Abstract VI
Chapter I. Overview the hormonal signaling and transcriptional control of adipocyte differentiation. ……………………………………………………………………1
1. Physiological roles of adipose tissues
1.1 Overview
1.2 Adipose tissue as an endocrine organ
1.3 Obesity and energy balance
2. Program of adipose development
2.1 Commitment of multipotent stem cell to the adipocyte lineage
2.2 Terminal differentiation of adipocytes
3. Transcription control of adipocyte differentiation
3.1 Overview
3.2 C/EBP-β and -δ
3.3 PPAR-γ
3.4 C/EBP-α
3.5 ADD1/SREBP-1c
3.6 Other transcription factors
4. Cellular and hormonal regulation of adipogenesis
4.1 Factors that stimulate adipogenesis
4.2 Factors that inhibit adpiogenesis
5. Experimental rationale
Chapter II. cDNA cloning, expression and functional characterization of a novel 15-oxoprostaglandin-Δ13-reductase from 3T3-L1 adipocytes. ……………………14
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Figures and Legends
Chapter III. Identification of 15-keto prostaglandin E2 as a PPAR-γ ligand. ……………………………………………38
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Figures and Legends
Chapter IV. Modulation of PPAR-γ activation by PGE2 catabolism. ……………………………………………………55
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Figures and Legends
References…………………………………………………………72
Appendix
dc.language.isoen
dc.title前列腺素的分解代謝在脂肪細胞分化過程中所扮演的角色zh_TW
dc.titleThe role of prostaglandin catabolism in adipocyte differentiation.en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee莊立民,王惠鈞,林榮耀,陳青周
dc.subject.keyword前列腺素,脂肪細胞分化,zh_TW
dc.subject.keywordprostaglandin,PPAR-γ,adipocyte differentiation,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2007-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved