請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29787完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 段維新 | |
| dc.contributor.author | Chin-Yi Chiu | en |
| dc.contributor.author | 邱靜誼 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:18:51Z | - |
| dc.date.available | 2008-07-25 | |
| dc.date.copyright | 2007-07-25 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-19 | |
| dc.identifier.citation | [1] W. Schanek, M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” J. Mater. Res., 13 [1] 94-117 (1998)
[2] J. D. Bumgardner, B.I. Johansson, “Effects of Titanium-Dental Restorative Alloy Galvanic Couples on Cultured Cells,” J. Biomed. Mater. Res. (Appl. Biomater.) 43: 184-191 (1998) [3] L. L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc., 74 [7] 1487-510 (1991) [4] D. Shi (Ed.), Biomaterials and Tissue Engineering, Spirnger-Verlag Berlin Heidelberg, Germany (2004) [5] H. Aoki, Medical Application of Hydroxyapatite, Ishiyaku EuroAmerica, Tokyo, St. Louis (1994) [6] J. B. Park, Biomaterials Science and Engineering, Plenum Press, New York (1987) [7] G. D. and A. J. Corbijn, “Metal fibre reinforced hydroxyl-apatite ceramics,” J. Mater. Sci., 24, 3411-3415 (1989) [8] Y. E. Greish, P. W. Rrown, “Characterization of bioactive glass-reinforced HAP-polymer composites,” J. Biomed. Mater. Res., 52, 687-694 (2000) [9] N. Ignjatovic, E. Suljovrujic, J. Budinski-Simendic, I. Krakovsky, D. Uskokovic1, “Evaluation of hot-pressed hydroxyapatite poly-L-lactide composite biomaterial characteristics,” J. Biomed. Mate.r Res. Part B: Appl. Biomater., 71B, 284-294 (2004) [10] H. Plenk, Jr., “Prosthesis-Bone Interface,” J. Biomed. Mater. Res. (Appl Biomater) 43, 350-355 (1998) [11] A. Afshar, M. Ghorbani, N. Ehsani, M. R. Saeri, C. C. Sorrell, “Some important factors in the wet precipitation process of hydroxyapatite,” Mater. Des., 24, 197-202 (2003) [12] S. Lazic, S. Zec, N. Miljevic, S. Milonjic, “The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid,” Thermochim. Acta, 374, 13-22 (2001) [13] S. K. Pratihar, M. Garg, S. Mehra, “Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique,” J. Mater. Sci. Mater. Med., 17, 501-507 (2006) [14] K. Sato, Y. Hotta, T. Nagaoka, M. Yasuoka, K. Watari, “Agglomeration control of hydroxyapatite nano-crystals grown in phase-separated microenvironments,” J. Mater. Sci., 41, 5424-5428 (2006) [15] P. V. Landuyt, F. Li, J. P. Keustermans, J. M. Streydio, “The influence of high sintering temperatueres on the mechanical properties of hydroxyapatite,” J. Mater. Sci. Mater. Med., 6, 8-13 (1995) [16] P. E. Wang, T.K. Chaki, “Sintering behavior and mcchanical properties of hydroxyaptite and dicalcium phosphate,” J. Mater. Sci. Mater. Med., 4, 150-158 (1993) [17] Y. W. Gu, N. H. Loh, K. A. Khor, S. B. Tor, P. Cheang, “Spark plasma sintering of hydroxyapatite powders,” Biomaterials, 23 (2002) 37-43 [18] I. Manjubala, M. Sivakumar, “In-situ synthesis of biphasic calcium phosphate ceramics using microwave irradiation,” Mater. Chem. Phys., 71, 272-278 (2001) [19] S. Raynaud, E. Champion, D. Bernache-Assolant, “Calcium phosphate apatites with variable Ca/P atomic ratioІІ. Calcination and sintering,” Biomaterials, 23, 1073-1080 (2002) [20] S. C. Liou, S. Y. Chen, H. Y. Lee, J. S. Bow, “Structural characterization of nano-sized calcium deficient apatite powders,” Biomaterials, 25, 189-196 (2004) [21] K. Donadel, M. C. M. Laranjeira, V. L. Goncalves, V. T. Favere, J. C. de Lima, “Hydroxyapatites Produced by Wet-Chemical Methods,” J. Am. Ceram. Soc., 88 [8] 2230-2235 (2005) [22] A. Slosarczyk, Z. Paszkiewicz, C. Paluszkiweicz, “FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods,” J. Mol. Struct., 744-747, 657-661 (2005) [23] G. Muralithran, S. Ramesh, “The effects of sintering temperature on the properties of hydroxyapatite,” Ceram. Int., 26, 221-230 (2000) [24] C. Kothapalli, M. Wei, A. Vasiliev, M. T. Shaw, “Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite,” Acta Mater., 52, 5655-5663 (2004) [25] K. C. B. Teong, J. Wang, S.C. Ng, “Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4,” Biomaterials, 22, 2705-2712 (2001) [26] E. Landi, A. Tampieri, G. Celotti, S. Sprio, “Densification behaviour and mechanisms of synthetic hydroxyapatites,” J. Europ. Ceram. Soc., 20, 2377-2387 (2000) [27] J. G. Li and X. Sun, “Synthesis and sintering behavior of a nanocrystalline α-alumina powder,” Acta Mater., 48, 3103-3112 (2000) [28] H. Y. Juang, M. H. Hon, “Effect of calcinations on sintering of hydroxyapatite,” Biomaterials, 17, 2059-2084 (1996) [29] D. L. Hohnson, I. B. Culter, “Diffusion Sinterinf: І, Initial Stage Sintering Models and Their Application to Shrinkage of Powder Compacts,” J. Am. Ceram. Soc., 46 [11] 541-545 (1963) [30] Z. H. J. Ma, C. Wang, “Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics,” Biomaterials, 26, 1613-1612 (2005) [31] K. A. Gross, L.M. Rodriguez-Lornzo, “Sintered hydroxyapatites. Part І: Sintering ability of precipitated solid solution powders,” Biomaterials, 25, 1357-1384 (2004) [32] S. Bailliez, A. Nzihou, “The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent,” Chem. Eng. J. 98, 141–152 (2004) [33] R. M. German, Sintering theory and practice, John Wiley & Sons, Inc. (1996) [34] M. N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, Inc. (1995) [35] J. R. Groza, “Nanosintering,” Nanostruct. Mater., 12, 987-992 (1999) [36] M. J. Mayo, “Processing of nanocrystalline ceramics from ultrafine particles,” Int. Mater. Rev., 41 [3] 85-115 (1996) [37] B. C. Kim and etc., “Effect of forming pressure on densification behavior of nanocrystalline ITO powder,” J. Europ. Ceram. Soc., 27, 807-812 (2007) [38] W.H. Rhodes, “Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 64, 19-22 (1981) [39] W. B. Russel, D. A. Saville, W. R. Schowalter, Colloidal Dispersions, Cambridge University Press, New York (1989) [40] W. M. Sigmund, “Novel Powder-Processing Mthods for Advanced Ceramics,” J. Am. Ceram. Soc., 83 [7] 1557-1574 (2000) [41] A. V. Ragulya and V. V. Skorokhod, “Rate-Controled Sintering of Ultrafine Nickle Powder,” Nanostruct. Mater., 5 [7/8] 835-843 (1995) [42] I. W. Chen and X. H. Wang, “Sintering dense nanocrystalline ceramics without final-stage grain growth,” Nature, 404 [9] 168-171 (2000) [43] H. T. Kim, Y. H. Han, “Sintering of nanocrrystalline BaTiO3,” Ceram. Int., 30, 1719-1723 (2004) [44] A. Polotai, K. Breece, E. Dickey, C. Randall, “A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramcis,” J. Am. Ceram. Soc., 88 [11] 3008-3-12 (2005) [45] K. Bodisova, P. Sajgalik, “Two-stage Sintering of Alumina with Submicrometer Grain Size,” J. Am. Ceram. Soc., 90 [1] 330-332 (2007) [46] B. P. Singh, R. Menchavez, C. Takai, M. Fuji, M. Takahashi, “Stability of dispersions of colloidal alumina particles in aqueous suspensions,” J. Colloid Interface Sci., 291 (2005) 181-186 [47] J. Zhang, H. Tanaka, F. Ye, D. Jiang, M. Iwasa, “Colloidal processing and sintering of hydroxyapatite,” Mater. Chem. Phys., (2007) 69-76 [48] E. Kissa, Dispersions, Marcel Dekker, New York, 1999 [49] P. Bowen, C. Carry, D. Luxembourg, H. Hofmann, “Colloidal processing and sintering of nanosized transition aluminas,” Powder Technol., 157, 100-107 (2005) [50] L. M. Rodriguez-Lorenzo, M. Vallet-Rigi, J. M. F. Ferreira, “Colloidal processing of hydroxyapatite,” Biomaterials 22 (2001) 1847-1852 [51] H. Y. Yasuda, S. Mahara, Y. Umakoshi, S. Imazato, S. Ebisu, “Microstructure and mechanical property of synthesized hydroxyapatite prepared by colloidal process,” Biomaterials 21 (2000) 2045-2049 [52] J. Zhang, M. Maeda, N. Kotobuki, M. Hirose, H. Ohgushi, D. Jiang, M. Iwasa, “Aqueous processing of hydroxyapatite,” Mater. Chem. Phys., 99 (2006) 398-404 [53] T. Tian, D. Jiang, J. Zhang, Q. Lin, “Aqueous tape casting process for hydroxyapatite,” J. Europ. Ceram. Soc., 27 (2007) 2671-2677 [54] A. Rapacz-Kmita, C. Paluszkiweicz, A. Slosarczyk, Z. Paszkiewicz, “FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes,” J. Mol. Struct. 744-747, 653-656 (2005) [55] H. Heuer, Advances in Ceramics, volume 12, Science and Technology of Zirconia Ⅱ, The American Ceramic Society, Inc. Columbus, Ohio, 714-726 (1984) [56] F. F. Lange, “Powder processing science and technology for increased reliability,” J. Am. Ceram. Soc., 72 [1] 3-15 (1989) [57] M. B. Thomas, R. H. Doremus, “Fracture strength of dense Hydroxyapatite,” Ceram. Bull., 60 [2] 258-259 (1981) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29787 | - |
| dc.description.abstract | 本實驗以氫氧化鈣和磷酸為起使原料,利用化學共沉法合成出直徑約10~20 nm,長度約50~100nm的針狀氫氧基磷灰石,藉由一般的無壓燒結方法將所生產的奈米級氫氧基磷灰石燒結成緻密的胚體。本實驗致力於解決奈米粉成團的問題。在氫氧基磷灰石未生成前在漿料內添加分散劑,且利用真空幫浦來抽掉漿料內所溶解的氣體,再利用離心成形的方法得到微結構相當均勻的生胚。假如生胚中仍含有大量或是大尺寸的團塊,此情況將會需要提高燒結溫度來得到緻密胚體,而導致晶粒的大量成長。本實驗改善製程使得相當小尺寸的團塊均勻分佈在生胚中,配合兩段式燒結的方法,在第一階段升溫到1200°C,不持溫,降溫到第二階段1100°C持溫二十個小時,在此燒結條件下,成功的燒結出近乎緻密的胚體,而晶粒大小不到400nm。本實驗利用高解析度的X光繞射儀來做氫氧基磷灰石的相鑑定,在研究溫度範圍內都沒有發現相分解的情形。 | zh_TW |
| dc.description.abstract | Stoichiometric hydroxyapatite precipitates with the size of 10~20 nm in diameter and 50~100nm in length were prepared by using a wet method (chemical co-precipitation) from the precursors of phosphate acid and calcium hydroxide. The nano powder was then used to prepare dense HAp body by using pressureless sintering. The present study strived to solve the problem of agglomeration of the nanocrystalline particles. A dispersant was added into the suspension before precipitates formed. The removal of dissolved gas from the slurry is also critical for the preparation of green compact. The nearly agglomeration-free particles were consolidated by centrifugation. If the agglomerates remain in the powder, higher sintering temperature is needed to eliminate inter-agglomerate pores. For the compact formed by the nearly agglomerate-free powder, nearly fully dense hydroxyapatite body could be produced by 1st step sintering at 1200°C and then 2nd step sintering at 1100°C for 20 hrs. The grain size below 400nm is obtained. High resolution X-ray diffraction analysis demonstrates that no decomposition takes place during the sintering at 1200°C. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:18:51Z (GMT). No. of bitstreams: 1 ntu-96-R94527007-1.pdf: 3179192 bytes, checksum: 5a9c77d59a6b969e45dcfc746cee6a2a (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction…………………………………………………..............1 Chapter 2 Literature Review…...................…………………………………4 2-1 Introduction to HAp……………………………………………….......................4 2-2 Preparation of HAp…………………………………………………..................11 2-3 Sintering of HAp…………………………………………………......................13 2-3-1 Thermal stability…………………………………………….......................13 2-3-2 Sintering properties………………………………………….......................15 2-3-3 Densification mechanism and activation energy calculation........................16 2-4 Solid-state sintering……………………………………………….....................20 2-4-1 Basic concepts………………………………………………......................20 2-4-2 Sintering of nano-particles………………………………....................……25 2-4-3 Two-step sintering………………..................……………………………29 2-5 Dispersion............................................................................................................32 2-6 Colloidal processing of HAp…………………………………...........................34 Chapter 3 Experiment Procedure......................................................................36 3-1 Materials..............................................................................................................36 3-2 Preparation of specimen by dry process..............................................................37 3-2-1 Preparation of Hap powders and specimens.................................................37 3-2-2 Die pressing..................................................................................................38 3-2-3 Thermal treatment.........................................................................................38 3-2-4 Characterizations..........................................................................................39 3-3 Preparation of specimen by colloidal process......................................................42 3-3-1 Preparation of HAp slurry.............................................................................42 3-3-2 Preparation of specimens..............................................................................43 3-3-3 Thermal treatment.........................................................................................43 3-3-4 Characterizations..........................................................................................44 Chapter 4 Results................................................................................................48 4-1 Characterization of die-pressing specimens.........................................................48 4-1-1 Phase identification and FTIR spectra..........................................................48 4-1-2 Morphology of drying precipitates and green compact................................52 4-1-2 Thermal analysis...........................................................................................54 4-1-3 Microstructure observation and sintering density.........................................56 4-2 Characterization of specimens by colloidal process............................................59 4-2-1 Phase identification.......................................................................................59 4-2-2 Morphology of as-precipitates and green compact.......................................60 4-2-3 Thermal analysis...........................................................................................63 4-2-4 Microstructure observation and sintering density.........................................64 4-2-5 Grain size......................................................................................................70 4-2-6 Two-step sintering.........................................................................................74 4-3 Sintering kinetics and activation energy..............................................................78 Chapter 5 Discussion............................................................................................81 5-1 Phase identification..............................................................................................81 5-2 Comparison of the HAp fabricated by various processes....................................83 5-2-1 Observation of precipitates and green compact...........................................83 5-2-2 Particle size distribution..............................................................................84 5-2-3 Pore size distribution...................................................................................86 5-2-4 Dilatometry results.......................................................................................88 5-2-5 Microstructure..............................................................................................93 5-3 One step sintering vs. two-step sintering.............................................................95 5-4 Sintering technique vs. preparation of specimens................................................99 Chpater6 Conclusions.......................................................................................102 References.................................................................................................................104 | |
| dc.language.iso | en | |
| dc.subject | 奈米粉末 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 膠粒製程 | zh_TW |
| dc.subject | 兩段燒結 | zh_TW |
| dc.subject | nano-sized particle | en |
| dc.subject | two-step sintering | en |
| dc.subject | hydroxyapatite | en |
| dc.subject | colloidal process | en |
| dc.title | 奈米級氫氧基磷灰石的製程研究 | zh_TW |
| dc.title | Preparation of Nano-sized Hydroxyapatite | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳三元,林峰輝 | |
| dc.subject.keyword | 氫氧基磷灰石,膠粒製程,兩段燒結,奈米粉末, | zh_TW |
| dc.subject.keyword | hydroxyapatite,colloidal process,two-step sintering,nano-sized particle, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
