請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉德銘 | |
| dc.contributor.author | Shu-Han Yang | en |
| dc.contributor.author | 楊舒涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:18:38Z | - |
| dc.date.available | 2008-07-31 | |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-19 | |
| dc.identifier.citation | 參考文獻 (References)
姚銘輝、盧虎生、朱鈞. 2002. 葉綠素螢光與作物生理反應. 科學農業 55: 31-41. 陳駿季、廖清玲. 1995. 竹芋類觀葉植物組織培養. 行政院農業委員會研究報告摘要. 褚昱均、葉德銘. 2006. 馴化光度對白馬粗肋草組織培養苗出瓶後葉片光合作用與植株生長之影響. 臺灣園藝 52: 199-208. Afreen, F., S. M. A. Zobayed, and T. Kozai. 2002. Photoautotrophic culture of coffea arabusta somatic embryos: Development of a bioreactor for large-scale plantlet conversion from cotyledonary embryos. Ann. Bot. 90:21-29. Aikten, C. J. 1991. Automation micropropagation: Technology and application. Kluwer Academic Publishers. Dordrecht. Netherlands. Akula, A., D. Becker, and M. Bateson. 2000. High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, ‘TRI-2025’, by temporary immersion. Plant Cell Rpt. 19: 1140-1145. Alvard, D., F. Cote, and C. Teisson. 1993. Comparison of methods of liquid medium culture for banana micropropagation. Plant Cell Tiss. Org. Cult. 32: 55-60. Aragón, C., M. Escalona, I. Capote, D. Pina, I. Cejas, R. Rodriguez, M. J. Cañal, J. Sandoval, S. Roels, P. Debergh, and J. Gonzalez-Olmedo. 2005. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cell. Dev. Biol. Plant 41: 550-554. Arigita, L., A. González, and R. S. Tamés. 2002. Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants cultured in vitro. Physiol. Plant. 115: 166-173. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1-15. Berthouly, M., M. Dufour, D. Alvard, C. Carasco, L. Alemano, and C. Teisson. 1995.Coffee micropropagation in a liquid medium culture using temporary immersion thchnique. p. 514-519. In: ASIC Publishers (ed) 16th International Scientific Colloquium on coffee, Kyoto, Japan. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489-504. Blanke, M.B. and A. B. Belecher. 1989. Stomata of apple leaves cultured in vitro. Plant Cell Org. Cult. 19: 85-89. Bolhar-Nordenkampf, H. R., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber, and G. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 3: 497-514. Brainerd, K.E., L. H. Fuchigami, S. Kwiatkoski, and C. S. Clark. 1981. Leaf anatomy and water stress of aseptically cultured ‘‘Pixy’’ plum under different environments. HortScience 16: 173-175. Buddendorf-Joosten J. M. C. and E. J. Woltering. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regulat. 15: 1-16. Cabasson, C., D. Alvard, D. Dambier, P. Ollitrailt, and C. Teisson. 1997. Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell Tiss. Org. Cult. 50: 33-37. Capellades, M., R. Lemeur, and P. Debergh. 1991. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tiss. Org. Cult. 25: 21-26. Carvalho, L. C., M. L. Osório, M. M. Chaves, and S. Amâncio. 2001. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tiss. Org. Cult. 67: 271-280. Chao, C. C. T., P. S. Devand, and J. Chen. 2005. AFLP analysis of genetic relationships among Calathea species and cultivars. Plant Sci. 168: 1459-1469. Cournac, L., B. Dimon, P. Carrier, A. Lahou, and Chagvardieff, P. 1991. Growth and photosynthetic characteristics of Solanum tuberosum plantlets cultivated in vitro in different conditions of aeration, source supply and CO2 enrichment. Plant Physiol. 97: 112-117. Cui, Y. Y., E. J. Hahn, T. Kozai, and K. Y. Paek. 2000. Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro. Plant Cell Tiss. Org. Cult. 62: 219-226. Demmig-Adams, B. and W. W. Adams. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599-626. Desjardins, Y., A. Gosselin, and S. Yelle. 1987. Acclimatization of ex vitro strawberry plantlets in CO2 enriched environments and supplementary lighting. J. Amer. Soc. Hort. Sci. 112: 846-851. Dewir, Y. H., D. Chakrabarty, E. J. Hahn, and K. Y. Paek. 2006. A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In vitro Cell. Dev. Biol. Plant 42: 291-297. Diaz-Perez, J. C., E. G. Sutter, and K. A. Shackel. 1995. Acclimatization and subsequent gas exchange, water relation, survival and growth of microcultured apple plantlets after transplanting them in soil. Physiol. Plant. 95: 225-232. Donnelly, D. J. and W. E. Vidaver. 1984. Pigment content and gas exchange of red raspberry in vitro and ex vitro. J. Amer. Soc. Hort. Sci. 109: 177-181. Drew, A. P., Kavanagh, K. L., and Maynard, C. A. 1992. Acclimatization microprogated black cherry by comparison with half-sib seedlings. Physiol. Plant. 86: 459-464. Dunston, S. and E. Sutter. 1984. In vitro propagation of prayer plants. HortScience 19: 511-512. Ebrahima, M. K. H. and I. A. Ibrahim. 2000. Influence of medium solidification and pH value on in vitro propagation of Maranta leuconeura cv. Kerchoviana. Sci. Hort. 86: 211-221. Escalona, M. G. Samson, C. Borroto, and Y. Desjardins. 2003. Physiology of effects of temporary immersion bioreactors on micropropagated pineapple plantlets. In Vitro Cell. Dev. Biol. Plant 39: 651-656. Estrada-Luna, A. A., F. T. Davies, and J. N. Egilla. 2001. Physiological changes and growth of micropropagated chile ancho pepper plantlets during acclimatization and post-acclimatization. Plant Cell Tiss. Org. Cult. 66: 17-24. Etienne, H. and M. Berthouly. 2002. Temporary immersion systems in plant micropropagaiton. Plant Cell Tiss. Org. Cult. 69: 215-231. Fari, M., A. Andrasfalvy, and J. Nemeth. 1987. Thin PVC foil covering (TPFC) an efficient method for culture and preacclimatization of in vitro plant cultures. Acta Hort. 212: 371-374. Figueira, A., A. Whipkey, and J. Janick. 1991. Enriched CO2 and light promote in vitro shoot growth and development of Theobroma cacao. J. Amer. Soc. Hort. Sci. 116: 585-589. Fuchigami, L. H., T. Y. Cheng, and A. Soeldner. 1981. Abaxial transpiration and water loss in aseptically culture plum. J. Amer. Soc. Hort. Sci. 106: 519-522. Fuentes, G., C. Talavera, Y. Desjardins, and J. M. Santamaria. 2005a. High irradiance can minimize the negative effect of exogenous sucrose on the photosynthetic capacity of in vitro grown coconut plantlets. Biol. Plant. 49:7-15. Fuentes, G., C. Talavera, C. Oropeza, Y. Desjardins, and J. M. Santamaria. 2005b. Exogenous sucrose can decrease in vitro photosynthesis but improve field survival and growth of coconut (Cocos nucifera L.) in vitro plantlets. In vitro Cell. Dev. Biol.- Plant 41:69-76. Fujiwara, K. and T. Kozai. 1995. Physical microenvironment and its effects. p. 319-367. In: Aitken-Christe, J. Kozai, T., Smith, M. L. (eds.). Automation and environmental control in plant tissue culture, Kluwer Academic Publishers, Dordrecht, Neth. Galzy, R. and D. Compan. 1992. Remarks on mixotrophic and autotrophic carbon nutrition of Vitis plantlets cultured in vitro. Plant Cell Tissue Org. Cult. 31: 239-244. Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirement of suspension culture of soybean root cell. Expt. Cell Res. 50: 151-158. George, E. F. 1993. Plant propagation by tissue culture, 2nd Ed. Exegetics Ltd. U.K. p. 524. González-olmedo, J. L., Z. Fundora, L. A. Molina, J. Abdulnour, Y. Desjardins, and M. Escalona. 2005. New contributions to propagation of pineapple (Ananas comosus L. Merr.) in temporary immersion bioreactors. In Vitro Cell. Dev. Biol. Plant 41: 87-90. Grout, B. W. W. 1988. Photosynthesis of regenerated plantlets in vitro and the stresses of transplanting. Acta Hort. 230: 129-135. Grout, B.W.W. and S. Millam. 1985. Photosynthetic development of micropropagated strawberry plantlets following transplanting. Ann. Bot. 55: 129-131. Harris, R. E. and E. B. Mason. 1983. Two machines for in vitro propagation of plants in liquid media. Can. J. Plant Sci. 63: 311-316. Hazarika, B. N. 2006. Morpho-physiological disorders in in vitro culture of plants. Scientia Hort. 108: 105-120. Hazarika, B. N., 2003. Acclimatization of tissue cultured plants. Curr. Sci. 85: 1705–1712. Hazarika, B. N., V. A. Parthasarathy, and V. Nagaraju. 2001. Influence in vitro preconditioning of citrus microshoots with paclobutrazol on ex vitro survival. Acta Bot. Croatiica 60: 25-29. Hazarika, B. N., V. A. Parthasarathy, and V. Nagaraju. 2000. Paclobutrazol induced biochemical changes in microshoots of citrus species. Folia Hort. 12: 69-77. Henny, R. J. and W. C. Fooshee. 1988. Response of Anthurium ‘Lady Jane’ liners to different light and fertilizer levels. Proc. Fla. State Hort. Soc. 101: 304-305. Huxley, A. 1994. The new royal horticultural society dictionary of gardening. The Macmillon Publishing Co., London, U. K. Jeon, M. W., M. B. Ali, E. J. Hahn, and K. Y. Paek. 2005. Effects of photon flux density on the morphology, photosynthesis and growth of a CAM orchid, Doritaenopsis during post-micropropagation acclimatization. Plant Growth Regulat. 45: 139-147. Jeon, M. W., M. B. Ali, E. J. Hahn, and K. Y. Paek. 2006. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature. Environ. Expt. Bot. 55: 183-194. Jeong, B.R., K. Fujiwara, and T. Kozai. 1995. Environmental control and photoautotrophic micropropagation. Hort. Rev. 17: 125-173. Jennifer, R. D., O. van Kooten, R. K. Prange, and D. P. Murr. 1999. Application of chlorophyll fluorescence techniques in postharvest physiology. Hort. Rev. 23: 69-107. Jova, M. C., R. G. Kosky, M. B. Pérez1, A. S. Pino, V. M. Vega, J. L. Torres, A. R. Cabrera, M. G. García, and J. la C. deVentura. 2005. Production of yam microtubers using a temporary immersion system. Plant Cell Tiss. Org. Cult. 83: 103-107. Kate, M. and G. N. Johnson. 2000. Chlorophyll fluorescence- a practical guide. J. Expt. Bot. 51: 659-668. Kirdmanee, P., Y. Kitaya, and T. Kozai. 1995. Rapid acclimatization of Eucalyptus plantlets by controlling photosynthetic photon flux density and relative humidity. Environ. Control Biol. 33: 123-132. Koch, K. E. 1996. Carbohydrate modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509-540. Koch, K., K. D. Hartmann, L. Schreiber, W. Barthlott, and C. Neinhuis. 2006. Influences of air humidity during cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ. Expt. Bot. 56: 1-9. Kovtun, Y. and J. Daie. 1995. End product control of carbon metabolism in culture grown sugarbeet plants. Plant Physiol. 108: 1647-1657. Kozai, T. 1991. Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol. Plant 279: 47-51. Kozai, T., Y. Iwanami, and K. Fujiwara. 1987. Environment control for mass propagation of tissue cultured plantlets. 1. Effect of CO2 enrichment on the plantlet growth during the multiplication stage. Plant Tiss. Cult. Lett. 4: 22-26. Krause, G. H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol. Plant. 74: 566-574. Krause, G. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev. Plant Physiol. Plant Mol Biol. 42: 313-349. Leshem, B. 1983. Growth of carnation meristem in vitro: anatomical structure of abnormal plantlets and the effect of agar concentration in the media in their formation. Ann. Bot. 52: 413-415. Lian, M. L., D. Chakrabarty, and K. Y. Paek. 2003. Growth of Lilium oriental hybrid ‘Casablanca’ bulblet using bioreactor culture. Scientia Hort. 97: 41-48. Lorenzo, J. C., B. L. González, M. Escalona, C. Teisson, P. Espinosa, and C. Borroto. 1998. Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss. Org. Cult. 54: 197-200. Lucchesini, M., G. Monteforti, A. Mensuali-Sodi, and G. Serra. 2006. Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Biol. Plant. 50: 161-168. Öquist, G., J. M. Anderson, S. McCaffery, and W. S. Chow. 1992. Mechanistic differences in photoinhibition of sun and shade plants. Planta 188: 422-431. Maes, K. and P.C. Debergh. 2003. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell Tiss. Org. Cult. 75: 73-78. Majada, J. P., M. L. Centeno, I. Feito, B. Fernández, and R. Sánchez-Tamés. 1998. Stomatal and cuticular traits on carnation tissue culture under different ventilation conditions. Plant Growth Regulat. 25: 113-121. Majada, J. P., M. I. Sierra, and R. Sánchez-Tamés. 2001. Air exchange rate affects the in vitro developed leaf cuticle of carnation. Scientia Hort. 87: 121-130. Martin, J.T. and B. E. Juniper. 1970. The cuticles of plants. Martins’s Press, New York. McAlister1, B., J. Finnie, M. P. Watt, and F. Blakeway1. 2005. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tiss. Org. Cult. 81: 347-358. Meira, Z. 2000. Bioreactor technology for plant micropropagation. Hort. Rev. 24: 1-29. Mera, Z., A. Schwartz, and D. Fleminger. 1987. Malfunctioning stomata in vitreous leaves of carnation plant propagated in vitro, implications for hardening. Plant Sci. 52: 127-134. Mohanty, N., I. Vass, and S. Demeter. 1989. Copper toxicity affects photosystem II electron transport the secondary quinine acceptor (QB). Plant Physiol. 90: 175-179. Mok M. C. and D. W. S. Mok. 1985. The metabolism of 〔C14〕-thidiazuron in callus tissue of Phaseolus lunatus. Physiol. Plant 65: 427-432. Murashiage, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-497. Nhut, D. T., B. V. Le, S. Fukai, M. Tanaka, and K. T. T. Van. 2001. Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture. Plant Growth Regulat. 33: 59-65. Nowak, J., S. Sroka, and B. Matysiak. 2002. Effects of light level, CO2 enrichment, and concentration of nutrient solution on growth, leaf nutrient content, and chlorophyll fluorescence of boston fern microcuttings. J. Plant Nutr. 25: 2161-2171. Paek, K. Y., D. Chakrabarty, and E. J. Hahn. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plant. Plant Cell Tiss. Org. Cult. 81: 287-300. Pérez, A., L. Nápoles, C. Carvajal, M. Hernandez, and J. C. Lorenzo. 2004. Effect of sucrose, inorganic salts, inositol, and thiamine on protease excretion during pineapple culture in temporary immersion bioreactors. In Vitro Cell. Dev. Biol. Plant 40: 311-316. Pierik, R. L. M. 1987. In vitro culture of higher plants. Martinus Nijhoff, Boston. Piqueras, A., J. M. van Huylenbroeck, B. H. Han, and P. C. Debergh. 1998. Carbohydrate partitioning and metabolism during acclimatization of micropropagated Calathea. Plant Growth Regulat. 26: 25-31. Podwyszyńska, M. 1997. Micropropagation of Calathea ornata Koern. Biol. Plant. 39: 179-186. Pospisilova, J., I. Ticha, S. Kadlecek, D. Haisel, and S. Pizakova. 1999. Acclimatization of micropropagated plants in ex vitro conditions. Biol. Plant. 42: 481-497. Preece, J. E. and E. G. Sutter. 1991. Acclimatization in micropropagated plants to the greenhouse and field. p. 71-93. In: Debergh, P. C. and R. H. Zimmerman (eds.). Micropropagation. Kluwer Academic Publishers, Dordrecht, Neth. Prusky, D., H. Hamdan, R. Ardi, and N. T. Keen. 1996. Induction of biosynthesis of epicatechin in avocado suspension cells treated with an enriched CO2 atmosphere. Physiol. Mol. Plant Pathol. 48: 171-178. Ramanayake, S. M. S. D., V. N. Meemaduma, and T. E. Weerawardene. 2006. In vitro shoot proliferation and enhancement of rooting for the large-scale propagation of yellow bamboo (Bambusa vulgaris ‘Striata’). Scientia Hort. 110: 109-113. Ritchie, G. A., K. C. Short, and M. R. Davey. 1991. In vitro acclimatization of chrysanthemum and sugar beet plantlets by treatment with paclobutrazol and exposure to reduced humidity. J. Expt. Bot. 42: 1557-1563. Rodríguze, R., M. Cid, D. Pina, J. L. González-Olmedo, and Y. Desjardins. 2003. Growth and photosynthetic activity during acclimatization of sugarcane plantlets cultivated in temporary immersion bioreactors. In Vitro Cell. Dev. Biol. Plant 39: 657-662. Roels, S., M. Escalona, I. Cejas, C. Noceda, R. Rodriguez, M. J. Canal, J. Sandoval, and P. Debergh. 2005. Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tiss. Org. Cult. 82: 57-66. Roels, S., C. Noceda, M. Escalona, J. Sandoval, M. J. Canal, R. Rodriguez, and P. Debergh. 2006. The effect of handspace renewal in a temporary immersion bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tiss. Org. Cult. 84: 155-163. Schreiber, U. and P. A. Armond. 1978. Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochem. Biophys. Acta 502: 138-151. Serret, M. D. and M. I. Trillas. 2000. Effects of light and sucrose levels on the anatomy, ultrastructure, and photosynthesis of Gardenia jasminoides Ellis leaflets cultured in vitro. Intl. J. Plant Sci. 161: 281-289. Serret, M. D., M. I. Trillas, J. Matas, and J. L. Araus. 2001. The effect of photoautotrophy on photosynthesis and photoinhibition of Gardenia plantlets during micropropagation. Photosynthetica 39: 245-255. Simonton, W. R. C. and S. Krueger. 1991. A programmable micropropagation apparatus using cycled medium. Plant Cell Tiss. Org. Cult. 27: 211-218. Sinha, A., M. Hofmann, U. Römer, E. L. Köckenberger, and T. Roitsch. 2002. Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol. 128:1480-1489. Sissel, T., T. Fjeld, H. R. Gislerod, and R. Moe. 2003. Leaf anatomy and stomatal morphology of greenhouse roses grown at modest or high air humidity. J. Amer. Soc. Hort. Sci. 128: 598-602. Smith, E.F., A. V. Roberts, J. Mottley, and S. Denness. 1991. The preparation of in vitro of chrysanthemum for transplantation to soil. 4. The effect of eleven growth retardants on wilting. Plant Cell Tiss. Org. Cult. 27: 309-313. Sutter, E. 1985. Morphological, physical and chemical characteristics of epicuticular wax on ornamental plants regenerated in vitro. Ann. Bot. 55: 321-329. Sutter, E. 1988. Stomatal and cuticular water loss from apple, cherry and sweet gum plants after removal from in vitro culture. J. Amer. Soc. Hort. Sci. 113: 234-238. Sutter, E. and R. W. Langhans. 1979. Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture. J. Amer. Soc. Hort. Sci. 104: 493-496. Syvertsen, J. and M. A. L. Smith. 1984. Light acclimation in citrus leaves. I. Changes in physiological characteristics, chlorophyll and nitrogen content. J. Amer. Soc. Hort. Sci. 109: 807-812. Tanadka, M. and Y. Sakanshi. 1980. Clonal propagation of Phalaenopsis through tissueculture. Proc. 9th World Orchid Conf. p. 211-215. Teresa, E. V. 2004. Plant regeneration of Anthurium andreanum cv. Rubrun. Elec. J. Biotech. 7: 282-286. Ticha, I., F. Cap, D. Pacovska, P. Hofman, D. Heisel, V. Capkova, and C. Schafer. 1998. Culture on sugar medium enhance photosynthetic capacity and high light resistance of plantlets grown in vitro. Physiol. Plant. 102: 155-162. Ticha, I., B. Radochova, and P. Kadlecck. 1999. Stomatal morphology during acclimatization of tobacco plantlets to ex vitro conditions. Biol. Plant. 42: 469-474. Tisserat, B., C. Herman, R. Silman, and R. J. Bothast. 1997. Using ultra-high carbon dioxide levels enhances plantlet growth in vitro. Hort. Tech. 7: 282-289. Tisserat, B. and C. E. Vandercook. 1985. Development of an automated plant culture system. Plant Cell Tiss. Org. Cult. 5: 107-117. van Assche F. and H. Clijsters. 1990. Effect of metals on enzyme activity in plants. Plant Cell Environ 13: 195-206. van Huylenbroeck, J. M., and P. C. Debergh. 1996. Impact of sugar concentration in vitro on photosynthesis and carton metabolism during ex vitro acclimatization of Spathiphyllum plantlets. Physiol. Plant. 96: 298-304. van Huylenbroeck, J. M., H. Huygens, and P. C. Debergh. 1995. Photoinhibition during acclimatization of micropropagated Spathiphyllum ‘Petite’ Plantlets. In Vitro Cell. Dev. Biol. Plant 31: 160-164. van Huylenbroeck, J. M., A. Piqueras, and P. C. Debergh. 1998. Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci. 134: 21-30. van Huylenbroeck, J. M., A. Piqueras, and P. C. Debergh. 2000. The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci. 155: 59-66. Wataad, A., K. G. Raghothana, M. Kochba, A. Nissim, and V. Caba. 1997. Micropropagation of Spathiphyllum and Syngonium is facilited by use of interfacial memberane rafts. HortScience 32: 307-308. Wetzstein, H. Y. and H. E. Sommer. 1982. Leaf anatomy of tissue cultured Liquidambar styraciflua (Hamamelidaceae) during acclimatization. Amer. J. Bot. 69: 1579-1586. Wetzstein, H. Y. and H. E. Sommer. 1983. Scanning electron microscopy of in vitro cultured Liquidambar styraciflua plantlets during acclimatization. J. Amer. Soc. Hort. Sci. 108: 475-480. Winterma, J. F. and A. Demots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta. 109: 448-453. Xuan, C. P., D. Chakrabarty, E. J. Hahn, and K. Y. Paek. 2003. A simple method for mass production of potato microtubers by using bioreactor system. Cur. Sci. 84: 1129-1132. Yadava, U. L. 1986. A rapid and nondestructive method to determine chlorophyll in leaves. HortiScience 21: 1449-1450. Yanes, E., J. L. González-Olmedo, and R. Rodríguze. 2000. Light management during acclimatization of pineapple (Ananas comosus (L.) Merr.) cv. Cayenalisa ‘Serrana’ vitroplants. Newsletter of the Pineapple Working Group No. 7, Int. Soc. Hort. Sci. June: 3-5. Zaid, A., and H. Hughes. 1995. A comparison of stomatal function and frequency of in vitro polyethylene glycol treated and greenhouse grown plants of date palm, Phoenix dactylifera L. Trop. Agric. 72: 130-134. Zeiger, E. 1983. The biology of stomatal guard cells. Annu. Rev. Plant Physiol. 34: 441-475. Ziv, M. 1991. Vitrification: morphological and physiological disorders of in vitro plants. p. 45-69. In: Debergh, P. C. and R. H. Zimmerman (eds.). Micropropagation. Kluwer Academic Publishers, Dordrecht, Neth. Ziv, M., G. Meir, and A. H. Halevy. 1983. Factors influencing the production of hardened glaucous carnation plantlets in vitro. Plant Cell Tiss. Org. Cult. 2: 55-56. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29782 | - |
| dc.description.abstract | 短暫淹灌系統(Temporary immersion system, TIS)結合了液態培養之優點和通氣性的特性,本研究利用短暫淹灌系統培養青蘋果竹芋;並與半固態培養相比,期能增加繁殖倍率和植株生長速率。此外,也探討培養系統、培養基糖以及光強度對組培苗出瓶光合作用能力與生長之影響,期望找出適合青蘋果竹芋的培養基蔗糖濃度、培養系統和馴化光度,以利組培苗的後續生長。
短暫淹灌系統中,以每培植體80 mL液態培養基對於芽體形成表現較佳。青蘋果竹芋於全量MS培養基,添加4%蔗糖、2.2 μM NAA及26.7 μM BA誘導芽體數較多。隨著培養基TDZ濃度由0 µM增加至3.64 µM,可誘導較多芽體,但高TDZ濃度(2.73、3.64 µM)會導致芽體叢生捲曲且無法正常伸長。 青蘋果竹芋組培苗培植在含2%、4%或6%蔗糖之半固態培養基,調查出瓶馴化期間之光合作用及生長狀況。結果顯示以4%蔗糖處理者生長、葉片厚度表現較佳。組培苗瓶內形成之葉片,在出瓶初期Fv/Fm值皆下降。以2%蔗糖處理者之Fv/Fm值降至0.55,之後回復較慢。組培苗之蒸散速率和氣孔導度測值,在剛出瓶時皆很高,出瓶一天之測值即急速下降。在瓶內形成葉片的二氧化碳交換速率在剛出瓶時約為1.3-1.8 µmol CO2 m-2•s-1,於出瓶7天時較低,之後呈上升趨勢。 不同培養系統之青蘋果竹芋組織培養苗,出瓶後置於生長箱中馴化35天,再經溫室栽培65天,調查其葉片形態解剖、光合作用及生長狀況,結果顯示短暫淹灌系統培養之組織培養苗葉片較厚、氣孔密度較低及較多表面蠟質堆積,與瓶外生長之葉片形態較相近。因此在出瓶馴化時期,葉片Fv/Fm值回升較快、葉綠素計讀值隨馴化時間上升,顯示短暫淹灌系統培養之組織培養苗具較佳之環境適應性。 青蘋果竹芋組織培養苗置於生長箱中,分別以40、120或200 µmol•m-2•s-1光度馴化35天。再經溫室栽培65天調查後其生長狀況,結果顯示出瓶後以40 µmol•m-2•s-1處理者生長、葉片厚度表現較佳。組培苗瓶內形成之葉片,在出瓶初期Fv/Fm值皆下降,處理光度越高測值越低。以120和200 µmol•m-2•s-1處理下之Fv/Fm值降至0.27和0.19,之後回復較慢。組培苗之蒸散速率和氣孔導度測值,在剛出瓶時皆很高,出瓶一天之測值即急速下降。在瓶內形成葉片的二氧化碳交換速率在剛出瓶時約為0.85 µmol CO2 m-2•s-1,於出瓶7天時較低,之後呈上升趨勢。 | zh_TW |
| dc.description.abstract | Temporary immersion system (TIS) has both advantages of maximum gas exchanges in solid culture media and increased nutrient up take in liquid culture. To increase the rate of multiplication and plant growth, effects of sucrose concentration, cultural system and photosynthetic photon flux (PPF) during ex vitro acclimatization on photosynthetic behaviors and growth were studied in micropropagated Calathea orbifolia. The objectives of this research were to determine the proper sucrose concentration, cultural system and ex vitro PPF during acclimatization that could promote the subsequent growth of plantlets after transfer.
An addition of 80 mL culture medium per explant in TIS resulted in maximum shoot formation. Full MS medium supplemented with 4% sucrose, 2.2 μM NAA and 26.7 μM BA produced maximum shoot number. Shoot number increased with increasing TDZ concentration, while high TDZ concentrations of 2.73 and 3.64 µM resulted in shorter and rosetted shoots. Micropropagated Calathea orbifolia plantlets, cultured with 2%, 4% or 6% sucrose concentrations, were transplanted to a soilless mix and placed in a growth chamber to measure their photosynthetic capacity and growth. Plants cultured with 4% sucrose in vitro had greater growth. All the Fv/Fm values in the in vitro-formed leaves decreased in the early period after transfer. The Fv/Fm value reduced to 0.55 and recovered slower afterwards in plants at 2%. For all the plantlets tested, the stomatal conductance and transpiration rate in the in vitro-formed leaf were high at transfer and decreased dramatically on day one after transfer. Photosynthetic rate of in vitro-formed leaf was measured as 1.3-1.8 µmol CO2 m-2•s-1 at transfer, decreased after transferring for seven day, and then increased gradually. After having been acclimatized for 35 days in the growth chamber, the micropropagated Calathea orbifolia plantlets, cultured in solid medium or in a TIS, were then transferred to a shaded greenhouse for 65 days and their leaf anatomy, growth and photosynthetic capacity was determined. In vitro-formed leaves in TIS were thicker, had lower stomatal frequency and more surface wax, similar to the ex vitro-formed leaf. In TIS treatment, leaf Fv/Fm value recovered earlier and SPAD-502 reading increased during acclimatization, suggesting that plantlets could adapt to the changing environments. Micropropagated Calathea orbifolia plantlets were transplanted to a soilless mix and placed in a growth chamber under fluorescent lamp providing PPF of 40、120 0r 200 µmol•m-2•s-1. After having been acclimatized for 35 days in the growth chamber, the plantlets were then transferred to a shaded greenhouse for 65 days and their growth was measured. Plantlets under 40 µmol•m-2•s-1 had greater growth. All the Fv/Fm values in the in vitro-formed leaf decreased in the early period after transfer, and then increased thereafter. High PPF at 120 or 200 µmol•m-2•s-1 reduced the Fv/Fm value to 0.27 or 0.19, clearly exhibiting photo inhibition and a slow increase in the Fv/Fm value afterwards. For all the plantlets tested, the stomatal conductance and transpiration rate values in the in vitro-formed leaf were high at transfer and decreased dramatically on day one after transfer. Photosynthetic rate of in vitro-formed leaf was measured as 0.85 µmol CO2 m-2•s-1 at transfer, decreased after transferring for seven day, and then increased gradually. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:18:38Z (GMT). No. of bitstreams: 1 ntu-96-R94628101-1.pdf: 2335123 bytes, checksum: 8afd32ec70146db2e53cf8514ec16cea (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要 (Abstract) 1
第一章 前言 (Introduction) 3 第二章 前人研究 (Literature Review) 5 一、 竹芋之微體繁殖與出瓶馴化簡介 5 二、 短暫淹灌系統在植物微體繁殖上之利用 6 (一) 短暫淹灌系統簡介 7 (二) 短暫淹灌系統於不同種類微體繁殖之利用 8 (三) 影響短暫淹灌系統生產效率之因子 9 三、 培養基成分對於芽體增殖之影響 11 (一) 無機鹽類 11 (二) 碳水化合物 11 (三) 生長調節劑 11 四、 瓶內環境對組培苗形態及生理上之影響 12 (一) 光合作用 13 (二) 葉片形態 15 五、 利用Fv/Fm值偵測瓶苗出瓶馴化後逆境的發生 16 六、 影響組培苗出瓶馴化之因子 18 (一) 瓶內馴化 18 (二) 出瓶馴化 20 第三章 青蘋果竹芋於短暫淹灌系統中之芽體增殖 22 Chapter 3. Shoot multiplication of Calathea orbifolia in a temporary immersion system. 22 前言 (Introduction) 22 材料與方法 (Materials and Methods) 24 結果 (Results) 27 討論 (Discussion) 29 第四章 蔗糖濃度對青蘋果竹芋組織培養苗出瓶馴化時期之光合作用與生長之影響 41 Chapter 4. Effects of sucrose concentration during ex vitro acclimatization on photosynthetic behaviors and growth of micropropagated Calathea orbifolia plantlets 41 前言 (Introduction) 41 材料與方法 (Materials and Methods) 43 結果 (Results) 46 討論 (Discussion) 48 第五章 培養系統對青蘋果竹芋組織培養苗葉片形態解剖及出瓶馴化時期之光合作用與生長之影響 63 Chapter 5. Effects of culture system on leaf morphology, leaf anatomy, photosynthetic behaviors and growth of micropropagated Calathea orbifolia 63 前言 (Introduction) 63 材料與方法 (Materials and Methods) 65 結果 (Results) 68 討論 (Discussion) 70 第六章 光度對青蘋果竹芋組織培養苗出瓶馴化時期之光合作用與生長之影響 Chapter 6. Effects of photosynthetic photon flux during ex vitro acclimatization on photosynthetic behaviors and growth of micropropagated Calathea orbifolia 83 前言 (Introduction) 83 材料與方法 (Materials and Methods) 85 結果 (Results) 88 討論 (Discussion) 91 第七章 綜合討論 General discussion 105 Summary. 109 參考文獻 (References) 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 短暫淹灌系統 | zh_TW |
| dc.subject | 竹芋 | zh_TW |
| dc.subject | 馴化 | zh_TW |
| dc.subject | TIS | en |
| dc.subject | sucrose | en |
| dc.subject | micropropagation | en |
| dc.title | 青蘋果竹芋瓶內芽體增殖及其出瓶馴化生理 | zh_TW |
| dc.title | In Vitro Shoot Multiplication and ex Vitro Acclimatization Physiology of Calathea Orbifolia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許圳塗,朱建鏞,沈再木 | |
| dc.subject.keyword | 竹芋,短暫淹灌系統,馴化, | zh_TW |
| dc.subject.keyword | TIS,micropropagation,sucrose, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
