請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29729完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王根樹(Gen-Shuh Wang) | |
| dc.contributor.author | Shu-Ting Hsieh | en |
| dc.contributor.author | 謝淑婷 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:16:31Z | - |
| dc.date.available | 2014-10-03 | |
| dc.date.copyright | 2011-10-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-03 | |
| dc.identifier.citation | Amann, R. L., Ludwig, W. and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59: 143-169.
Andreozzi, R., Cesaro, R., Marotta, R. and Pirozzi, F. (2006). Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments. Chemosphere 62(9): 1431-1436. Bahgat, M., Dewedar, A. and Zayed, A. (1999). Sand-filters used for wastewater treatment: Buildup and distribution of microorganisms. Water Research 33(8): 1949-1955. Bai, X. H., Wu, F., Zhou, B. H. and Zhi, X. H. (2010). Biofilm bacterial communities and abundance in a full-scale drinking water distribution system in Shanghai. Journal of Water and Health 8(3): 593-600. Baribeau, H., Krasner, S. W., Chinn, R. and Singer, P. C. (2005). Impact of biomass on the stability of HAAs and THMs in a simulated distribution system. Journal American Water Works Association 97(2): 69-81. Bayless, W. and Andrews, R. C. (2008). Biodegradation of six haloacetic acids in drinking water. Journal of Water and Health 6(1): 15-22. Brophy, K. S., Weinberg, H. S. and Singer, P. C. (1999). Quantification of nine halogenated acetic acids in drinking water using gas chromatography with electron capture detection. Abstracts of Papers of the American Chemical Society 217: U741-U742. Bruchet, A., Hochereau, C., Gogot, C. and Codiassa, D. (1998). Taste and Odor Episodes in Drinking Waters : Solved and Unsolved Case Studies and Needs for Future Research. Proc. of 4-th International Workshop on Drinking Water Quality Managemant and Treatment Technology, Taiwan, R.O.C. Calvo-Bado, L. A., Pettitt, T. R., Parsons, N., Petch, G. M., Morgan, J. A. W. and Whipps, J. M. (2003). Spatial and temporal analysis of the microbial community in slow sand filters used for treating horticultural irrigation water. Applied and Environmental Microbiology 69(4): 2116-2125. Campos, L. C., Su, M. F. J., Graham, N. J. D. and Smith, S. R. (2002). Biomass development in slow sand filters. Water Research 36(18): 4543-4551. Cao, L., Zhang, X., Wang, Z., Liu, W., Li, S., Zhang, S., Jiang, Y., Wu, W. and Jin, W. (1999). Adsorption characteristics of haloacetic acids by activated carbon in drinking water treatment. Huanjing Kexue 20(5): 72-75. Capar, G., Demirer, G. N., Dilek, F. B. and Yetis, U. (2001). Removal of trihalomethane precursors by granular activated carbon treatment. Fresenius Environmental Bulletin 10(2): 197-202. Chang, D. W. (2008). Disruption of Cyanobacteria cells and removal of their metabolites in the water treatment processes. Technol, Dept Environm Engn. Tainan, Natl Cheng Kung Univ. Chang, E. E., Lin, Y. P. and Chiang, P. C. (2001). Effects of bromide on the formation of THMs and HAAs. Chemosphere 43(8): 1029-1034. Chang, H. H. (2004). Analysis and Distribution of Haloacetic Acids in Drinking Water of Taiwan, National Taiwan University. Chellam, S. (2000). Effects of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion. Environmental Science & Technology 34(9): 1813-1820. Chowdhury, S., Champagne, P. and McLellan, P. J. (2010). Investigating effects of bromide ions on trihalomethanes and developing model for predicting bromodichloromethane in drinking water. Water Research 44(7): 2349-2359. Chung, Y. S., Yoo, S. H. and Kim, C. K. (2009). Effects of membrane hydrophilicity on the removal of a trihalomethane via micellar-enhanced ultrafiltration process. Journal of Membrane Science 326(2): 714-720. Codony, F., Morató J. and Mas J. (2005). Role of discontinuous chlorination on microbial production by drinking water biofilms. Water Research 39(9): 1896-1906. Collins, M. R., Eighmy, T. T., Fenstermacher, J. M. and Spanos, S. K. (1992). Removing natural organic-matter by conventional slow sand filtration. Journal American Water Works Association 84(5): 80-90. Cook, D., Newcombe, G. and Sztajnbok, P. (2001). The application of powdered activated carbon for MIB and geosmin removal: Predicting PAC doses in four raw waters. Water Research 35(5): 1325-1333. Cowman, G. A. and Singer, P. C. (1996). Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. Environmental Science & Technology 30(1): 16-24. Croué, J. P., Violleau, D. and Labouyrie, L. (2000). Disinfection By-Product Formation Potentials of Hydrophobic and Hydrophilic Natural Organic Matter Fractions: A Comparison Between a Low- and a High-Humic Water. Natural Organic Matter and Disinfection By-Products. S. E. Barrett, S. W. Krasner and G. L. Amy. 761: 139-153. Dodds, L., King, W., Allen, A. C., Armson, B. A., Fell, D. B. and Nimrod, C. (2004). Trihalomethanes in public water supplies and risk of stillbirth. Epidemiology 15(2): 179-186. Eichler, S., Christen, R., Holtje, C., Westphal, P., Botel, J., Brettar, I., Mehling, A. and Hofle, M. G. (2006). Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Applied and Environmental Microbiology 72(3): 1858-1872. Eighmy, T. T., Collins, M. R., Spanos, S. K. and Fenstermacher, J. (1992). Microbial-populations, activities and carbon metabolism in slow sand filters. Water Research 26(10): 1319-1328. Elhadi, S. L. N., Huck, P. M. and Slawson, R. M. (2004). Determination of system losses of geosmin and MIB in bench-scale filtration apparatus. Water Quality Research Journal of Canada 39(3): 207-212. Ellis, D. A., Hanson, M. L., Sibley, P. K., Shahid, T., Fineberg, N. A., Solomon, K. R., Muir, D. C. G. and Mabury, S. A. (2001). The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere 42(3): 309-318. Elmasry, M. H., Hassouna, M. S., Elrakshy, N. and Mousa, I. E. (1995). Bacterial-Populations in the Biofilm and Non-Biofilm Components of a Sand Filter Used in Water-Treatment. Fems Microbiology Letters 131(3): 263-269. Fuscoe, J. C., Afshari, A. J., George, M. H., DeAngelo, A. B., Tice, R. R., Salman, T. and Allen, J. W. (1996). In vivo genotoxicity of dichloroacetic acid: Evaluation with the mouse peripheral blood micronucleus assay and the single cell gel assay. Environmental and Molecular Mutagenesis 27(1): 1-9. Gehr, R., Swartz, C. and Offringa, G. (1993). Removal of trihalomethane precursors from eutrophic water by dissolved air flotation. Water Research 27(1): 41-49. Gerber, N. N. (1969). A Volatile Metabolite of Actinomycetes, 2-Methylisoborneol. Journal of Antibiotics 22(10): 508-. Giller, S., LeCurieux, F., Erb, F. and Marzin, D. (1997). Comparative genotoxicity of halogenated acetic acids found in drinking water. Mutagenesis 12(5): 321-328. Guay, C., Rodriguez, M. and Serodes, J. (2005). Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water. Desalination 176(1-3): 229-240. Guertler, V. and Stanisich, V. A. (1996). New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology (Reading) 142(1): 3-16. Hashimoto, S., Azuma, T. and Otsuki, A. (1998). Distribution, sources, and stability of haloacetic acids in Tokyo Bay, Japan. Environmental Toxicology and Chemistry 17(5): 798-805. Hayes, K. P. and Burch, M. D. (1989). Odorous compounds associated with algal blooms in South Australian waters. Water Research 23(1): 115-121. Hill, K. E., Marchesi, J. R. and Weightman, A. J. (1999). Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology 181(8): 2535-2547. Hirsch, P. and Alexander, M. (1960). Microbial decomposition of halogenated propionic and acetic acids. Canadian Journal of Microbiology 6(3): 241-249. Ho, L., Hoefel, D., Bock, F., Saint, C. P. and Newcombe, G. (2007). Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 66(11): 2210-2218. Hong, H. C., Mazumder, A., Wong, M. H. and Liang, Y. (2008). Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition. Water Research 42(20): 4941-4948. Hua, G. H. and Reckhow, D. A. (2007). Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environmental Science & Technology 41(9): 3309-3315. Hua, G. H. and Reckhow, D. A. (2007). Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Research 41(8): 1667-1678. Huck, P. M., Kenefick, S. L., Hrudey, S. E. and Zhang, S. (1995). Bench-scale determination of the removal of odor compounds with biological treatment. Water Science and Technology 31(11): 203-209. Ishida, H. and Miyaji, Y. (1992). Biodegradation of 2-methylisoborneol by oligotrophic bacterium isolated from a eutrophied lake. Water Science and Technology 25(2): 269-276. Izaguirre, G., Wolfe, R. L. and Means, E. G. (1988). Degradation of 2-methylisoborneol by aquatic bacteria. Applied and Environmental Microbiology 54(10): 2424-2431. Izaguirre, R., Wolfe, L. and Means, E. G. (1988). Bacterial degradation of 2-methyiisoborneol. Water Science and Technology 20: 205-210. Jensen, S. E., Anders, C. L., Goatcher, L. J., Perley, T., Kenefick, S. and Hrudey, S. E. (1994). Actinomycetes as a factor in odor problems affecting drinking-water from the North Saskatchewan river. Water Research 28(6): 1393-1401. Joe, W. H., Choi, I. C., Baek, Y. A., Choi, Y. J., Park, G. S. and Yu, M. J. (2007). Advanced treatment for taste and odour control in drinking water: case study of a pilot scale plant in Seoul, Korea. Water Science and Technology 55(5): 111-6. Jorand, F., Boue-Bigne, F., Block, J. C. and Urbain, V. (1998). Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Science and Technology 37(4-5): 307-315. Kanokkantapong, V., Marhaba, T. F., Pavasant, P. and Panyapinyophol, B. (2006). Characterization of haloacetic acid precursors in source water. Journal of Environmental Management 80(3): 214-221. Kargalioglu, Y., McMillan, B. J., Minear, R. A. and Plewa, M. J. (2002). Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratogenesis Carcinogenesis and Mutagenesis 22(2): 113-128. Khemakhem, W., Ammar, E. and Bakhrouf, A. (2005). Effect of environmental conditions on hydrophobicity of marine bacteria adapted to textile effluent treatment. World Journal of Microbiology & Biotechnology 21(8-9): 1623-1631. Kim, J. R., Jung, S. H., Regan, J. M. and Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology 98(13): 2568-2577. King, W. D., Dodds, L., Allen, A. C., Armson, B. A., Fell, D. and Nimrod, C. (2005). Haloacetic acids in drinking water and risk for stillbirth. Occupational and Environmental Medicine 62(2): 124-127. Koivusalo, M., Jaakkola, J. J. K., Vartiainen, T., Hakulinen, T., Karjalainen, S., Pukkala, E. and Tuomisto, J. (1994). Drinking-water mutagenicity and gastrointestinal and urinary-tract cancers - an ecological study in Finland. American Journal of Public Health 84(8): 1223-1228. Komaki, Y., Pals, J., Wagner, E. D., Marinas, B. J. and Plewa, M. J. (2009). Mammalian Cell DNA Damage and Repair Kinetics of Monohaloacetic Acid Drinking Water Disinfection By-Products. Environmental Science & Technology 43(21): 8437-8442. Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K. M. and Aieta, E. M. (1989). The occurrence of disinfection by-products in United-States drinking-water. Journal American Water Works Association 81(8): 41-53. Landmeyer, J. E., Bradley, P. M. and Thomas, J. M. (2000). Biodegradation of disinfection byproducts as a potential removal process during aquifer storage recovery. Journal of the American Water Resources Association 36(4): 861-867. Lauderdale, C. V., Aldrich, H. C. and Lindner, A. S. (2004). Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water. Water Research 38(19): 4135-4142. Lee, W. and Westerhoff, P. (2006). Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation. Water Research 40(20): 3767-3774. Liang, L. and Singer, P. C. (2003). Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environmental Science & Technology 37(13): 2920-2928. Lu, J. F., Zhang, T., Ma, J. and Chen, Z. L. (2009). Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. Journal of Hazardous Materials 162(1): 140-145. McRae, B. M., LaPara, T. M. and Hozalski, R. M. (2004). Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere 55(6): 915-925. Miller, J. H., Minard, K., Wind, R. A., Orner, G. A., Sasser, L. B. and Bull, R. J. (2000). In vivo MRI measurements of tumor growth induced by dichloroacetate: implications for mode of action. Toxicology 145(2-3): 115-125. Morris, R. D., Audet, A. M., Angelillo, I. F., Chalmers, T. C. and Mosteller, F. (1992). Chlorination, chlorination by-products, and cancer - a metaanalysis. American Journal of Public Health 82(7): 955-963. Muellner, M. G., Attene-Ramos, M. S., Hudson, M. E., Wagner, E. D. and Plewa, M. J. (2010). Human cell toxicogenomic analysis of bromoacetic acid: a regulated drinking water disinfection by-product. Environmental and Molecular Mutagenesis 51(3): 205-214. Nakamura, T., Kawasaki, N., Araki, M., Yoshimura, K. and Tanada, S. (2001). Trihalomethane removal by activated carbon fiber. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 36(7): 1303-1310. Nam, T. K., Timmons, M. B., Montemagno, C. D. and Tsukuda, S. M. (2000). Biofilm characteristics as affected by sand size and location in fluidized bed vessels. Aquacultural Engineering 22(3): 213-224. Narayan, L. V. and Nunez, W. J. (1974). Biological-control - isolation and bacterial oxidation of taste-and-odor compound geosmin. Journal American Water Works Association 66(9): 532-536. Ndiongue, S., Huck, P. M. and Slawson, R. M. (2005). Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Water Research 39(6): 953-964. Oikawa, E., Shimizu, A. and Ishibashi, Y. (1995). 2-Methylisoborneol Degradation by the Cam Operon from Pseudomonas-Putida Ppg1. Water Science and Technology 31(11): 79-86. Pereira, M. A., Li, K. W. and Kramer, P. M. (1997). Promotion by mixtures of dichloroacetic acid and trichloroacetic acid of N-methyl-N-nitrosourea-initiated cancer in the liver of female B6C3F1 mice. Cancer Letters 115(1): 15-23. Pirbazari, M., Borow, H. S., Craig, S., Ravindran, V. and McGuire, M. J. (1992). Physical-chemical characterization of 5 earthy-musty-smelling compounds. Water Science and Technology 25(2): 81-88. Plewa, M. J., Kargalioglu, Y., Vankerk, D., Minear, R. A. and Wagner, E. D. (2002). Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis 40(2): 134-142. Plewa, M. J., Simmons, J. E., Richardson, S. D. and Wagner, E. D. (2010). Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products. Environmental and Molecular Mutagenesis 51(8-9): 871-878. Plewa, M. J., Wagner, E. D., Richardson, S. D., Thruston, A. D., Woo, Y. T. and McKague, A. B. (2004). Chemical and biological characterization of newly discovered lodoacid drinking water disinfection byproducts. Environmental Science & Technology 38: 4713-4722. Pourmoghaddas, H. and Stevens, A. A. (1995). Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination. Water Research 29(9): 2059-2062. Qaisi, K. M. and Qasem, A. M. (1996). Evaluation of presence of THM in chlorinated wastewater and selected removal techniques. Journal of Environmental Science and Health Part a-Environmental Science and Engineering & Toxic and Hazardous Substance Control 31(8): 1851-1863. Ratasuk, C., Kositanont, C. and Ratanatamskul, C. (2008). 'Removal of haloacetic acids by ozone and biologically active carbon.' Scienceasia 34(3): 293-298. Reckhow, D. A., Singer, P. C. and Malcolm, R. L. (1990). Chlorination of Humic Materials - by-Product Formation and Chemical Interpretations. Environmental Science & Technology 24(11): 1655-1664. Richardson, S. D. (2005). Emerging drinking water disinfection by-products and new health issues. Environmental Exposure and Health 85: 91-94. Richardson, S. D., Simmons, J. E. and Rice, G. (2002). Disinfection byproducts: The next generation. Environmental Science & Technology 36(9): 198A-205A. Rittmann, B. E., Gantzer, C. J. and Montiel, A. (1995). Biological treatment to control taste-and-odor compounds in drinking water treatment. Advances in taste-and-odor treatment and control. Denver, AWWA Res. Fdn. . Robin, M. C., Taylor, T, E., James, M. F. and Stergios, K. S. (1989). Modifications of the Slow Sand Filtration Process for the Improved Removal of Trihalomethane Precursors. Water treatment and operations. Danver, AWWA Res. Fdn. Rostad, C. E., Martin, B. S., Barber, L. B., Leenheer, J. A. and Daniel, S. R. (2000). Effect of a constructed wetland on disinfection byproducts: Removal processes and production of precursors. Environmental Science & Technology 34(13): 2703-2710. Sadiq, R. and Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment 321(1-3): 21-46. Saito, A., Tokuyama, T., Tanaka, A., Oritani, T. and Fuchigami, K. (1999). Microbiological degradation of (-)-geosmin. Water Research 33(13): 3033-3036. Serodes, J. B., Rodriguez, M. J., Li, H. M. and Bouchard, C. (2003). Occurrence of THMs and HAAs in experimental chlorinated waters of the Quebec City area (Canada). Chemosphere 51(4): 253-263. Shang, C., Gong, W. L. and Blatchley, E. R. (2000). Breakpoint chemistry and volatile byproduct formation resulting from chlorination of model organic-N compounds. Environmental Science & Technology 34(9): 1721-1728. Singer, P. C. (1994). Control of disinfection by-products in drinking-water. Journal of Environmental Engineering-Asce 120(4): 727-744. Singer, P. C., Pyne, R. D. G., Avs, M., Miller, C. T. and Mojonnier, C. (1993). Examining the impact of aquifer storage and recovery on DBPs. Journal American Water Works Association 85(11): 85-94. Smith, M. K., Randall, J. L., Read, E. J. and Stober, J. A. (1992). Developmental toxicity of dichloroacetate in the rat. Teratology 46(3): 217-223. Speight, V. L. and Singer, P. C. (2005). Association between residual chlorine loss and HAA reduction in distribution systems. Journal American Water Works Association 97(2): 82-91. Stevens, A. A., Moore, L. A. and Miltner, R. J. (1989). Formation and control of non-trihalomethane disinfection by-products. American Water Works Association Journal 81(8): 54-60. Swan, S. H., Waller, K., Hopkins, B., Windham, G., Fenster, L., Schaefer, C. and Neutra, R. R. (1998). A prospective study of spontaneous abortion: Relation to amount and source of drinking water consumed in early pregnancy. Epidemiology 9(2): 126-133. Tate, C. and Arnold, K. (1992). Health and aesthetics aspects of water quality. Water quality and treatment. A handbook of community water supplies. Pontius FW. New York, AWWA. Thai, S. F., Allen, J. W., DeAngelo, A. B., George, M. H. and Fuscoe, J. C. (2003). Altered gene expression in mouse livers after dichloroacetic acid exposure. Mutation Research-Reviews in Mutation Research 543(2): 167-180. Toth, G. P., Kelty, K. C., George, E. L., Read, E. J. and Smith, M. K. (1992). Adverse male reproductive effects following subchronic exposure of rats to sodium dichloroacetate. Fundamental and Applied Toxicology 19(1): 57-63. Trudgill, P. W. (1984). Microbial degradation of the alicyclic ring: structural relationships and metabolic pathways. Microbial Degradation of Organic Compounds. D. T. Gibson. New York, USA, Marcel Dekker Inc.,: 131-180. Tsang, J. S. H. and Sam, L. J. (1999). Cloning and characterization of a cryptic haloacid dehalogenase from Burkholderia cepacia MBA4. Journal of Bacteriology 181(19): 6003-6009. Tucker, C. S. (2000). Off-flavor problems in aquaculture. Reviews in Fisheries Science 8(1): 45-88. Tully, D. B., Luft, J. C., Rockett, J. C., Ren, H. Z., Schmid, J. E., Wood, C. R. and Dix, D. J. (2005). Reproductive and genomic effects in testes from mice exposed to the water disinfectant byproduct bromochloroacetic acid. Reproductive Toxicology 19(3): 353-366. Tung, H. H., Regan, J. M., Unz, R. F. and Xie, Y. F. (2006). Microbial community structure in a drinking water GAC filter. Water Science and Technology: Water Supply 6(2): 267-271. Tung, H. H., Unz, R. F. and Xie, Y. F. (2006). HAA removal by GAC adsorption. Journal American Water Works Association 98(6): 107-112. Tung, S. C., Lin, T. F., Yang, F. C. and Liu, C. L. (2008). Seasonal change and correlation with environmental parameters for 2-MIB in Feng-Shen Reservoir, Taiwan. Environmental Monitoring and Assessment 145(1-3): 407-416. Uyak, V. and Toroz, I. (2007). Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply. Journal of Hazardous Materials 149: 445-451. Wahman, D. G., Henry, A. E., Katz, L. E. and Speitel, G. E. (2006). Cometabolism of trihalomethanes by mixed culture nitrifiers. Water Research 40(18): 3349-3358. Wahman, D. G., Katz, L. E. and Speitel, G. E. (2005). Cometabolism of Trihalomethanes by Nitrosomonas europaea. Applied and Environmental Microbiology 71(12): 7980-7986. Wahman, D. G., Katz, L. E. and Speitel, G. E. (2006). Trihalomethane cometabolism by a mixed-culture nitrifying biofilter. Journal American Water Works Association 98(12): 48-60. Waller, K., Swan, S. H., DeLorenze, G. and Hopkins, B. (1998). Trihalomethanes in drinking water and spontaneous abortion. Epidemiology 9(2): 134-140. Waniek, A., Bodzek, M. and Konieczny, K. (2002). Trihalomethane removal from water using membrane processes. Polish Journal of Environmental Studies 11(2): 171-178. Ward, K. W., Rogers, E. H. and Hunter, E. S. (2000). Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture. Toxicological Sciences 53(1): 118-126. WeberShirk, M. L. and Dick, R. I. (1997a). Biological mechanisms in slow sand filters. Journal American Water Works Association 89(2): 72-83. WeberShirk, M. L. and Dick, R. I. (1997b). Physical-chemical mechanisms in slow sand filters. Journal American Water Works Association 89(1): 87-100. Weightman, A. L., Weightman, A. J. and Slater, J. H. (1992). Microbial dehalogenation of trichloroacetic-acid. World Journal of Microbiology & Biotechnology 8(5): 512-518. Welte, B. and Montiel, A. (1999). Study of the possible origins of chlorinous taste and odour episodes in a distribution network. Water Science and Technology 40(6): 257-263. Williams, D. T., LeBel, G. L. and Benoit, F. M. (1997). Disinfection by-products in Canadian drinking water. Chemosphere 34(2): 299-316. Wobma, P., Pernitsky, D., Bellamy, B., Kjartanson, K. and Sears, K. (2000). Biological filtration for ozone and chlorine DBP removal. Ozone-Science & Engineering 22(4): 393-413. Wu, W. W., Benjamin, M. M. and Korshin, G. V. (2001). Effects of thermal treatment on halogenated disinfection by-products in drinking water. Water Research 35(15): 3545-3550. Wu, W. W. and Chadik, P. A. (1998). Effect of bromide ion on haloacetic acid formation during chlorination of Biscayne Aquifer water. Journal of Environmental Engineering-Asce 124(10): 932-938. Xie, Y. F. F. and Zhou, H. J. (2002). Use of BAC for HAA removal - Part 2, column study. Journal American Water Works Association 94(5): 126-134. Yagi, M., Nakashima, S. and Muramoto, S. (1988). Biological degradation of musty odor compounds, 2-methylisoborneol and geosmin, in a bio-activated carbon filter. Water Science and Technology 20(8-9): 255-260. Young, W. F., Horth, H., Crane, R., Ogden, T. and Arnott, M. (1996). Taste and odour threshold concentrations of potential potable water contaminants. Water Research 30(2): 331-340. Zhang, P., Lapara, T. M., Goslan, E. H., Xie, Y. F., Parsons, S. A. and Hozalski, R. M. (2009). Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems. Environmental Science & Technology 43(9): 3169-3175. Zhou, H. and Xie, Y. F. (2002). Using BAC for HAA removal: Part 1: Batch study. American Water Works Association Journal 94(4): 194-200. 吳俊宗. (2004). 藻類與金沙地區自來水水質關係之探討. 金門縣自來水廠, 中央研究院植物所. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29729 | - |
| dc.description.abstract | 本研究探討以生物降解方式處理水中微量有機物,如藻類降解所產生之異臭物質geosmin與2-methylisoborneol(2-MIB),以及加氯消毒副產物如含鹵乙酸之效果與影響。研究以經滅菌處理之金門慢濾池進流水為基質,作為濾砂表層生物膜生物降解之對照組,配合植菌組進行批次降解實驗。實驗結果顯示經滅菌處理之對照組移除geosmin之原因可能來自為維持好氧狀態所提供之曝氣所導致,植菌組則geosmin與2-MIB之濃度皆呈現下降趨勢。經168小時之接觸時間後,geosmin可去除77%以上,2-MIB則可去除30%以上;而植菌組水樣中之細菌培養數目於接觸後第2∼3天到達最高峰。以擬一階動力反應所得之生物降解速率常數,geosmin為0.046 day-1 (考慮geosmin因揮發而喪失之量),2-MIB則為0.057 day-1。以管柱填充濾砂方式模擬實場慢濾池之過濾作用(流速為5 m/day),經60 cm生物濾砂過濾後,植菌組管柱之geosmin可達93±3%之去除率,2-MIB則為63±7%,而控制組管柱則進流與出流之異臭物種濃度均無顯著差異。經慢濾處理後植菌組管柱水中溶氧由表層流經底層濾砂減少1.7 mg/L,顯示降解作用應為好氧生物作用所致;管柱表層為微生物活性較活躍之處,故主要生物降解作用於管柱上層10 cm之濾砂進行,但因2-MIB較難被生物所降解,則深層之濾砂在生物降解作用上仍扮演重要的角色。實場慢濾池之調查結果則顯示geosmin與2-MIB之去除率皆可達90%以上。由實驗室管柱模擬所得之速率常數,以一階動力模式預測模擬實場之2-MIB降解,結果大致符合金門太湖及榮湖水場之慢濾池實測結果。因金門太湖及榮湖水場二個慢濾單元操作時間均超過一年以上,若慢濾池經表面刮砂處理,因刮除表層濾砂大量之biomass,則刮砂後短期內可能會影響生物降解之效率。
金門淨水場原水之NPDOC濃度常於8∼10 mg/L以上,淨水場實場處理流程經加氯後會產生較高濃度之消毒副產物,故除藻類異臭物等有機前質外,本研究亦探討慢濾池處理消毒副產物HAAs及加氯作用之餘氯對生物降解之影響。研究同樣以金門慢濾池進流水培養超過一個月以上,濾砂表層具生物活性之濾砂進行批次實驗與管柱實驗。批次實驗於反應開始第三天加入不同濃度之次氯酸鈉溶液以觀察加氯消毒之影響。未具生物活性之對照組經連續觀察12天,並未觀察到HAAs之降解現象,且反應槽內溶液亦無觀察到可培養性之微生物生長,而在接觸第8天後隨著水中加氯量增加至0.5 mg/L以上,進流水中生成新的HAAs,之後HAAs濃度呈持續上升趨勢。生物濾砂組則於接觸第2天開始觀察到HAAs被降解之情形,第4天後即有顯著之降解趨勢。當進流水中加氯量達0.08 mg/L上時,生物濾砂反應槽內之微生物數量開始顯著減少,顯示此階段進流水之含氯量已對微生物降解造成抑制作用。Trichloroacetic acid (TCAA)由於較不易被生物所分解,需一段馴化期方能達良好降解作用,於反應第4天後才可觀察到明顯的降解效果。由批次實驗結果計算之反應速率常數K值可得含氯與含溴四種HAAs間之生物降解速率為:DCAA>DBAA>TBAA>TCAA,因而可推論含溴之HAAs相較於含氯之HAAs更易被生物所降解。當加氯劑量增加為0.5 mg/L且持續添加次氯酸鈉消毒劑時,批次反應之後期(第9∼12天)可生成大量之含溴HAAs,尤其以tribromoacetic acid (TBAA)濃度增加最為明顯。故當水中含有高濃度溴離子存在時,本研究使用之水樣經次氯酸鈉消毒生成之Br-HAA濃度高於Cl-HAA。 管柱模擬實驗亦比較三種溫度(17、21、23℃)之HAAs降解反應,HAAs總去除率隨水溫上升而增加,而三鹵鍵結的HAAs(TXAA)中,隨著含氯鍵結數目增加,去除量則降低,因此整體移除量為TBAA>DBCAA>BDCAA>TCAA,但若換算成去除率,則TCAA明顯低於其他三者外,其他三者間並無明顯差異,顯示三鹵中以TCAA最難降解。以人工配置之DCAA與TCAA進行管柱模擬實驗,流經10 cm生物濾床後,有93%之DCAA被降解,TCAA則為15.8%,流經60 cm管柱則可降解50%之TCAA,此現象顯示濾砂上之微生物需要較長的時間適應TCAA後,才能有較佳的生物降解反應。當提高次氯酸鈉劑量使管柱表面進流水餘氯濃度達0.6 mg/L時,濾砂上層微生物仍可有效降解DCAA,但濾床10 cm處之出流水中TCAA濃度則不降反升,這可能是氯與濾砂上之微生物作用,以微生物做為有機物前質而生成的加氯消毒副產物,且因氯之劑量提高而傾向產生氯鍵結較多的TCAA。 以R2A培養基觀察金門淨水場慢濾池濾砂之可培養性微生物數量,太湖淨水場與榮湖淨水場之慢濾池可觀察到二種不同之趨勢,一為微生物數量隨濾砂深度而減少,另一種為微生物數量與濾砂深度無相關,可能因水源不同之微生物種類差異與濾砂中可培養性與不可培養性之微生物仍有極大差距。進一步以ribosomal intergenic spacer analysis (RISA)方式進行微生物菌種分佈分析,將太湖慢濾池實場濾砂依深度分成上中下三層,結果顯示三種深度濾砂間之微生物數目與族群存在差異,且以unclutured bacteria為多數。將實驗室進行生物降解之模擬管柱濾砂進行DNA萃取與cloning,鑑定結果顯示表層濾砂以好氧微生物為主,底層濾砂則出現厭氧微生物,管柱濾砂鑑定出之微生物中,Bacillus、Pseudomonas、Sphingomonas、Acidobacteria等曾由geosmin與2-MIB之生物降解文獻中分離出,Burkholderiales與Sphingomonas則可降解MBAA、DCAA或TCAA;由此可知生物濾床對藻類異臭味物質2-MIB、geosmin與消毒副產物HAAs確可以生物降解方式移除。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:16:31Z (GMT). No. of bitstreams: 1 ntu-100-D93844003-1.pdf: 1477897 bytes, checksum: 4ea4e6a8508640cd3f29f44df6cf6734 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘 要 I
Abstract IV 目 錄 VI 圖目錄 VIII 表目錄 IX 第一章 前言...1 1-1研究緣起...1 1-2研究目的...2 第二章 文獻回顧...3 2-1水中天然有機物與消毒副產物...3 2-1-1水中背景有機物...3 2-1-2消毒與消毒副產物(DBPs)...4 2-2 含鹵乙酸(HAAs)之來源與分類...5 2-2-1 影響含鹵乙酸(HAAs)生成因素...6 2-3 DBPs對人體之健康影響...9 2-4飲用水之臭味問題...10 2-4-1水中臭味之種類與原因...10 2-5 淨水流程處理臭味物質與消毒副產物...12 2-5-1 淨水流程處理臭味物質...12 2-5-2 淨水流程處理消毒副產物...12 2-5-3 生物方式處理含鹵乙酸...14 2-6以慢濾池進行生物處理水中背景有機物與消毒副產物...15 2-6-1慢濾池簡介...15 2-6-2慢濾池之去除機制與特性...16 2-6-3慢濾池對有機物之去除...18 2-6-4慢濾池對消毒副產物之去除...18 2-7微生物鑑定與分析...19 2-8金門地區水質特性...21 2-8-1金門地區水源湖庫及淨水場...22 2-8-2金門淨水場慢濾池介紹...23 第三章 研究方法與材料...24 3-1研究架構...24 3-1-1實驗室管柱模擬...26 3-1-2實驗室批次反應槽模擬...29 3-1-3實場採樣...30 3-1-4濾砂生物分析...34 3-2材料與藥品...35 3-3儀器設備與分析方法...35 3-3-1水中異臭味物質、有機碳與消毒副產物分析...35 3-3-2 水中消毒副產物分析...36 3-4 濾砂生物膜之定量與定性分析...37 3-4-1 DNA萃取...38 3-4-2 聚合酵素連鎖反應(PCR reaction)...38 3-4-3 核醣體基因間隔序列分析與聚丙烯醯胺膠體電泳...41 3-4-4 分子選殖(Cloning)...42 3-4-5 限制酵素片段長度多型性法...43 第四章 結果與討論...44 4-1藻類異臭味物質降解...44 4-1-1藻類異臭味物質之批次實驗...44 4-1-2藻類異臭味物質降解連續管柱實驗...55 4-1-3藻類異臭物於實場慢濾池觀察情形...65 4-1-4結論...68 4-2消毒副產物在慢濾池中之生物降解與進流水餘氯之作用...70 4-2-1金門實場慢濾池觀察...70 4-2-2 含鹵乙酸生物降解批次實驗...74 4-2-3 慢濾管柱模擬含鹵乙酸生物降解試驗...80 4-3生物濾床微生物特性研究...89 4-3-1 濾砂表層微生物數量...89 4-3-2 濾砂微生物定性分析...91 第五章 結論與建議...97 參考文獻...101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鹵化乙酸 | zh_TW |
| dc.subject | 慢濾池 | zh_TW |
| dc.subject | 異臭味物質 | zh_TW |
| dc.subject | 生物降解 | zh_TW |
| dc.subject | Odorant | en |
| dc.subject | Slow Sand filter | en |
| dc.subject | Haloacetic acids | en |
| dc.title | 慢濾池中異臭味物質及鹵化乙酸降解特性之研究 | zh_TW |
| dc.title | Degradation Characteristics of Algal Odorants and Haloacetic Acids in Slow Sand Filters | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林財富(Tsair-Fuh Lin),康世芳(Shyh-Fang Kang),陳家揚(Chia-Yang Chen),張靜文(Ching-Wen Chang),童心欣(Hsin-Hsin Tung) | |
| dc.subject.keyword | 生物降解,慢濾池,異臭味物質,鹵化乙酸, | zh_TW |
| dc.subject.keyword | Haloacetic acids,Odorant,Slow Sand filter, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-03 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
