請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29718
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 舒貽忠(Yi-Chung Shu) | |
dc.contributor.author | Yu-Chieh Wei | en |
dc.contributor.author | 魏羽傑 | zh_TW |
dc.date.accessioned | 2021-06-13T01:16:04Z | - |
dc.date.available | 2013-08-10 | |
dc.date.copyright | 2011-08-10 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-03 | |
dc.identifier.citation | [1] 吳銘胤. The Comparison between Novel and Conventional Phase Field
Simulation of Ferroelectric Microstructure. 台灣大學應用力學所碩士班論 文,2010. [2] http://www.itrc.narl.org.tw/Publication/Newsletter/no68/p10.php [3] Uchino, K., 1998. Materials Issues in Design and Performance of Piezoelectric Actuators: An Overview. Acta Mater. 46, 3745–3753. [4] Shieh, J., Huber, J.E., Fleck, N.A., Ashby, M.F., 2001. The Selection of Sensors. Prog. Mater. Sci. 46, 461–504. [5] Bhattacharya, K., Ravichandran, G., 2003. Ferroelectric Perovskites for Electromechanical Actuation. Acta Mater. 51, 5941–5960. [6] M. E. Lines, A. M. Glass,1977. Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford. [7] G. H. Haertling, J. Vac.,1991. Sci. Technol. A, 9(3), 414 . [8] M. H. Francombe,1972. Thin Solid Films, 13, 413. [9] S. B. Lang,1984. Ferroelectrics, 53, 189. [10] G. H. Haertling,1987. Ferroelectrics, 75, 25. [11] C. A. P. de Araujo and G. W. Taylor,1991. Ferroelectrics, 116, 215. [12] Shu, Y.C., Bhattacharya, K., 2001. Domain Patterns and Macroscopic Behavior of Ferroelectric Materials. Philos. Mag. B 81, 2021–2054. [13] Burcsu, E., Ravichandran, G., Bhattacharya, K., 2004. Large Electrostrictive Actuation of Barium Titanate Single Crystals. J. Mech. Phys. Solids 52, 823–846. [14] Kamlah, M., Tsakmakis, C., 1999. Phenomenological Modeling of the Non-Linear Electromechanical Coupling in Ferroelectrics. Int. J. SolidsStruct. 36, 669–695. [15] McMeeking, R.M., Landis, C.M., 2002. A Phenomenological Multi-Axial Constitutive Law for Switching in Polycrystalline Ferroelectricceramics. Int. J. Eng. Sci. 40, 1553–1577. [16] Landis, C.M., 2002. Fully Coupled, Multi-Axial, Symmetric Constitutive Laws for Polycrystalline Ferroelectric Ceramics. J. Mech. Phys.Solids 50, 127–152. [17] Chen, L.Q., 2002. Phase-Field Models for Microstructure Evolution. Annu. Rev. Mater. Res. 32, 113–140. [18] Zhang, W., Bhattacharya, K., 2005a. A Computational Model of Ferroelectric Domains. Part I: Model Formulation and Domain Switching.Acta Mater. 53, 185–198. [19] Zhang, W., Bhattacharya, K., 2005b. A Computational Model of Ferroelectric Domains. Part II: Grain Boundaries and Defect Pinning. ActaMater. 53, 199–209. [20] Dayal, K., Bhattacharya, K., 2007. A Real-Space Non-Local Phase-Field Model of Ferroelectric Domain Patterns in Complex Geometries. ActaMater. 55, 1907–1917. [21] Shu, Y.C., Yen, J.H., 2007. Pattern Formation in Martensitic Thin Films. Appl. Phys. Lett. 91, 021908. [22] Shu, Y.C., Yen, J.H., Chen, H.Z., Li, J.Y., Li, L.J., 2008. Constrained Modeling of Domain Patterns in Rhombohedral Ferroelectrics. Appl.Phys. Lett. 92, 052909. [23] Bassiouny, E., Ghaleb, A.F., Maugin, G.A., 1988a. Thermodynamic Relations for Coupled Electromechanical Hysteresis Effects I. Basicequations. Int. J. Eng. Sci. 26,1279–1295. [24] Bassiouny, E., Ghaleb, A.F., Maugin, G.A., 1988b. Thermodynamic Relations for Coupled Electromechanical Hysteresis Effects II. Poling Ofceramics. Int. J. Eng. Sci. 26, 1297–1306. [25] Kamlah, M., 2001. Ferroelectric and Ferroelastic Piezoceramics—Modeling of Electromechanical Hysteresis Phenomena. Continuum Mech.Thermodyn. 13, 219–268. [26] Landis, C.M., 2004. Non-Linear Constitutive Modeling of Ferroelectrics. Curr. Opin.Solid State Mater. Sci. 8, 59–69. [27] Hwang, S.C., Lynch, C.S., McMeeking, R.M., 1995. Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model. Acta Metall. Mater. 43, 2073–2084. [28] Lu, W., Fang, D.N., Li, C.Q., Hwang, K.C., 1999. Nonlinear Electric-Mechanical Behavior and Micromechanics Modelling of Ferroelectricdomain Evolution. Acta Mater. 47, 2913–2926. [29] Kessler, H., Balke, H., 2001. On the Local and Average Energy Release in Polarization Switching Phenomena. J. Mech. Phys. Solids 49,953–978. [30] Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M., 1999. A Constitutive Model for Ferroelectric Polycrystals. J.Mech. Phys. Solids 47, 1663–1697. [31] Huber, J.E., 2005. Micromechanical Modelling of Ferroelectrics. Curr. Opin. Solid State Mater. Sci. 9, 100–106. [32] Li, W.F., Weng, G.J., 2004. A Micromechanics-Based Thermodynamic Model for the Domain Switch in Ferroelectric Crystals. Acta Mater. 52, 2489–2496. [33] Li, W.F., Weng, G.J., 2002. A Theory of Ferroelectric Hysteresis with a Superimposed Stress. J. Appl. Phys. 91, 3806–3815. [34] , J., Kreher, W.S., 2000. Self-Consistent Modelling of Non-Linear Effective Properties of Polycrystalline Ferroelectric Ceramics. Comput. Mater. Sci. 19, 123–132. [35] , J., Kreher, W.S., 2003. Modelling Linear and Nonlinear Behavior of Polycrystalline Ferroelectric Ceramics. J. Eur. Ceramic Soc. 23,2297-2306. [36] Fulton, C.C., Gao, H., 2001. Microstructure Modeling of Ferroelectric Fracture. Acta Mater. 49, 2039–2054. [37] Landis, C.M., McMeeking, R.M., 2001. A Self-Consistent Constitutive Model for Switching in Polycrystalline Barium Titanate. Ferroelectrics255, 13–34. [38] Li, J.Y., Liu, D., 2004. On Ferroelectric Crystals with Engineered Domain Configurations. J. Mech. Phys. Solids 52, 1719–1742. [39] Shu, Y.C., Lin, M.P., Wu, K.C., 2004. Micromagnetic Modeling of Magnetostrictive Materials Under Intrinsic Stress. Mech. Mater. 36,975–997. [40] DeSimone, A., 1993. Energy Minimizers for Large Ferromagnetic Bodies. Arch. Ration. Mech. Anal. 125, 99–143. [41] Arlt, G., Sasko, P., 1980. Domain Configuration and Equilibrium Size of Domains in BaTiO3 Ceramics. J. Appl. Phys. 51, 4956–4960. [42] Wada, S., Suzuki, S., Noma, T., Suzuki, T., Osada, M., Kakihana, M., Park, S.E., Cross, L.E., Shrout, T.R., 1999. Enhanced Piezoelectricproperty of Barium Titanate Single Crystals with Engineered Domain Configurations. Jpn. J. Appl. Phys. 38, 5505–5511. [43] Liu, D., Li, J. Y., 2003. The Enhanced and Optimal Piezoelectric Coefficients in Single Crystalline Barium Titanate with Engineered Domain Configurations. Applied Physics Letters 83, 1193–1195. [44] Liu, D., Li, J. Y., 2004. Domain-Engineered Pb(Mg1/3Nb2/3)O3 −PbTiO3 Crystals: Enhanced Piezoelectricity and Optimal Domain Configurations. Applied Physics Letters 84, 3930–3932. [45] Bhattacharya, K., Li, J. Y., Shu, Y. C., 2008. Homogenization of Ferroelectric Polycrystals , in manuscript. [46] 顏睿亨. Application of Multirank Lamination Theory to the Modeling of Ferroelectric and Martensitic Materials.台灣大學應用力學所博士班論文, 2008. [47] 邱柏榮. Simulation of Domain Patterns in Two-dimensional Ferroelectric Thin Films.台灣大學應用力學所碩士班論文, 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29718 | - |
dc.description.abstract | 本文主要是在探討鐵電材料因晶域翻轉而產生致動應變的力電耦合模型,在滿足力電諧和條件的情況下模擬菱方鐵電晶體內部晶域翻轉的機制,模擬使用的材料為鈦酸鋇(BaTiO3),近年來已有許多人做有關於正方晶(T-Phase)與菱方晶(R-Phase)的力電耦合研究,故我們對於菱方晶體內部的晶域翻轉機制也非常有興趣。首先,為了得到最大的制動應變以方便研究晶域內部的翻轉,我們先將材料內部晶格座標的[111]方向旋轉至實驗室座標的[001]方向,再使用多階層狀結構理論模擬菱方鐵電晶體在受到外加電場與應力場時的晶域翻轉行為,在理論推導的過程中,菱方晶與正方晶最大的不同在於,正方晶只有 與 兩種抵抗晶域翻轉的頑強電場,而菱方晶卻有 、 以及 三種,故 、 以及 三者之間的關係也非常值得我們研究。
此研究使用各種組合去模擬材料的電滯曲線以及蝴蝶曲線,並探討三種頑強電場之間的關係,以了解在晶域翻轉的過程中所扮演的角色。此外,藉由材料旋轉0°、5°及10°之結果,得到在旋轉0°時的致動應變最大。接著,分析模擬 以及 頑強電場在趨近於零時的表現,可知E109對菱方晶體致動應變的影響較E71來得大 。最後,以其它種變量組合模擬致動應變的大小,得到的結果皆相同。 | zh_TW |
dc.description.abstract | This thesis develops a mesoscopic electromechanical model to investigate the switching behavior of rhombohedral ferroelectric single crystals. The model is based on the multirank laminated domain pattern to insure the satisfaction of electromechanical compatibility condition. The result is applied to the study of actuation strain of a flat-plate device where a fixed compressive stress and a cycling electric field are applied normal to the plate.
It is first shown that the largest actuation strain can be induced when the crystal is oriented along the [111] direction. Different from the case of tetragonal ferroelectric crystals where there is only one non-180° switching (90° switching), rhombohedral ferroelectric crystals possess two non-180° switchings (71° and 109° switchings). As a result, it is found that the switching behavior varies significantly depending on the relative magnitudes of 71° and 109° coercive fields. It is shown that larger actuation strain can be achieved by lowing 109° coercive field. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:16:04Z (GMT). No. of bitstreams: 1 ntu-100-R98543064-1.pdf: 4121700 bytes, checksum: 82b9e48151dd53196648029929caf2a0 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 緒論1 1.1 鐵電材料介紹 1 1.2 研究背景與目的 3 1.3 本文架構 6 第2章 理論架構 7 2.1 鐵電兄弟晶 7 2.2 電彈性能 11 2.3 旋轉晶體座標 13 2.4 多階層狀結構排列 15 2.5 晶域翻轉機制 23 2.6 薄板結構 30 第3章 數值計算 35 3.1 計算驅動力以及阻力 35 3.2 計算流程 39 第4章 模擬結果 41 4.1 當E180小於E71與E109時菱方鐵電晶模擬結果 41 4.2 當E180大於E71與E109時菱方鐵電晶模擬結果 49 4.3 旋轉角度對致動應變的影響 58 4.4 探討71度以及109度頑強電場在極端值的影響 68 4.5 使用其他變量組合模擬比較 79 第5章 結論與未來展望 84 5.1 結論 84 5.2 未來展望 85 參考文獻 86 | |
dc.language.iso | zh-TW | |
dc.title | 以多階層狀結構理論模擬菱方鐵電晶體極化向量翻轉之機制研究 | zh_TW |
dc.title | Application of Multirank Lamination to the Simulation of
Polarization Switching in Rhombohedral Ferroelectric Crystals | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝宗霖(Zong-Lin Xie),郭心怡(Xin-Yi Guo) | |
dc.subject.keyword | 鐵電材料,多階層狀結構,力電耦合,晶域翻轉, | zh_TW |
dc.subject.keyword | Ferroelectric material,Multirank lamination,Electromechanical processes,Domain switching, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。