請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉子銘(Tzu-Ming Liu) | |
| dc.contributor.author | Yu-Shing Chen | en |
| dc.contributor.author | 陳裕興 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:15:14Z | - |
| dc.date.available | 2013-08-10 | |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-03 | |
| dc.identifier.citation | Algire G (1943) An adaptation of the transparent chamber technique to the mouse. J.
Natl. Cancer Inst. (1940-1978) 4, 1–11. Anderson RR, Parish JA (1981) The optics of human skin . J. Invest. Dermatol. 77:13. Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 13:377-83. Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear laser scanning microscopy by third harmonic generation. Appl Phys Lett 70:922. Beacham DA, and Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol. 15:329-41. Ben R, Lai GN, Adrian LS, Barbara Fazekas DG, Wolfgang W (2008) Visualizing dendritic cell migration within the skin. Histochem Cell Biol.130:1131–1146. Bhattacharyya M (2007) Anti-angiogenic and Anti-stromal Therapy. The Cancer Handbook 2nd Edition Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med. 204:345–356. Born M, Wolf E (1999) Priciple of Optics, 7th ed., Cambridge University Press, Cambridge, UK. Bor Z (1989) Distortion of femtosecond pulses in lenses. Opt Lett 14, 119. Bousso P, Robey EA (2004) Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity. 21:349–355. Bousso P, Robey E (2003) Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol. 4:579–585. Boyde A, Capasso G, Unwin RJ (1998) Conventional and confocal epi-reflection and fluorescence microscopy of the rat kidney in vivo. Exp. Nephrol. 6(5), 398–408. Brakenhoff GJ, Muller M, and Squier J (1995) Femtosecond pulse width control in microscopy by two-photon absorption autocorrelation. J Microsc 179, 253. Brakenhoff GJ, Squier J, Norris T, Bliton AC, Wade MH, Athey B (1996) Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J Microsc. 181(Pt 3):253–259. Breart B, Lemaitre F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest. 118:1390–1397. Brooks PC et al. (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79, 1157–1164. Brown E, McKee T, diTomaso E, Pluen A, Seed B, Boucher Y, Jain RK (2003) Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9(6), 796–800 (2003). Brown E, Campbell R, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK. (2001) In vivo measurement of gene expression, angiogenesis, and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine 7(7): 864-868. Cadinanos J and Bradley A (2007). Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 35:e87. Cahalan MD, Parker I (2008) Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annual review of immunology. 26:585–626. Canioni L, Rivet S, Sarger L, Barille R, Vacher P, Viosin P (2001) Imaging of Ca2+ intracellular dynamics with a third-harmonic generation microscope. Opt Lett 26:515. Centonze VE, White JG (1998) Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J. 75:2015–2024. Chen LH, Chu SW, Sun CK, Cheng PC and Lin BL (2002) Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Optical and Quantum Electronics. 34:1251. Chen SY, Hsieh CS, Chu SW, Lin CY, Ko CY, Chen YC, Tsai HJ, Hu CH, and Sun CK (2006) Noninvasive harmonics optical microscopy for long-term observation of embryonic nervous system development in vivo. J. Biomed. Opt. 11, 054022. Chen SY (2009) In vivo optical biopsy of human skin by using harmonic generation microscopy. PhD Thesis, National Taiwan University. Chen YT et. al., (2010). PiggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells. Stem Cells Dev. 19(6):763-71. Chu SW, Chen IH, Liu TM, Cheng PC, Sun CK and Lin BL (2001) Multimodal nonlinear spectral microscopy based on femtosecond Cr:forsterite laser. Opt. Lett. 26:1909-1911. Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai, HJ, SunCK (2003) In vivo developmental biology study using noninvasive multi-harmonic generation microscopy, Opt. Express: 11:3093. Cretu A and Brooks PC (2007) Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol. 213:391-402. Dearre D, SupattoW, Pena AM, Fabre A, Tordjmann T, Combettes L, Schanne-Klein MC, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic microscopy. Nat methods 3:47. Denk W, Strickler JH, Webb WW (1990) 2-Photon Laser Scanning Fluorescence Microscopy. Science. 248:73–76. Denk W, Svoboda K (1997). Photon upmanship: Why multiphoton imaging is more than a gimmick. Neuron 18 (3): 351–357. Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW, Yuste R (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods. 54:151–162. Dewhirst MW, Gustafson C, Gross JF, and Tso CY (1987) Temporal effects of 5.0 Gy radiation in healing subcutaneous microvasculature of a dorsal flap window chamber,” Radiat. Res. 112(3), 581–591. Colette W, Peggy N, Nadine S, Carla H (2010) RVT in Rodent Anesthesia Wetlab 26th Annual Conference and Trade Show Saskatchewan Association of Veterinary Technologists Inc. November 5-7, 2010; Saskatoon Drummond DR, Carter N, Cross RA (2002) Multiphoton versus confocal high resolution z-sectioning of enhanced green fluorescent microtubules: increased multiphoton photobleaching within the focal plane can be compensated using a Pockels cell and dual widefield detectors. J Microsc. 206:161–169. Duffy MJ, McGowan PM, and Gallagher WM (2008) Cancer invasion and metastasis: changing views. J Pathol. 214:283-93. Eliceiri BP and Cheresh DA (2001) Adhesion events in angiogenesis. Current Opinion in Cell Biology, 13, 563–568. Endrich B, Intaglietta M, Reinhold HS & Gross JF (1979) Hemodynamic characteristics in microcirculatory blood channels during early tumor growth. Cancer Res. 39, 17−23. Evelyne B, Laila R, Nienke V, Patrick W. B., Derksen and Jacco v (2011) Intravital microscopy: new insights into metastasis of tumors. Journal of Cell Science 124, 299-310. Figg WD and Folkman J (2008) Angiogenesis: An Integrative Approach From Science to Medicine. Eds., p. 601, Springer Science+Business Media, LLC, Berlin. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu NF, Selig M., Nielsen G, Taksir T, Jain R K, and Seed B (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715-725. Fukumura D and Jain RK (2008) Imaging angiogenesis and the microenvironment. APMIS. 116(7-8):695-715. Gadi P, Aaron L, Michal L, Leslie M. Loew (1999) Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites; Proc. Natl. Acad. Sci. USA Vol. 96, pp. 6700–6704. Germain RN, Miller MJ, Dustin ML, Nussenzweig MC (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol. 6:497–507. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices, Trends Cell Biol. 2003 May;13(5):264-9. Grzegorz S, Andreas V, Steffen M, Dirk Nand Konrad M (2004) Long-term anaesthesia using inhalatory isoflurane in different strains of mice—the haemodynamic effects. Lab Anim 38:64-69. Guild JB, Xu C, and Webb WW (1997) Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. Appl Opt 36, 397. Halin C, Rodrigo Mora J, Sumen C, von Andrian UH (2005) In vivo imaging of lymphocyte trafficking. Annual review of cell and developmental biology 21:581–603. Hasebe T, Sasaki S, Imoto S, Mukai K, Yokose T, Ochiai A (2002) Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod Pathol ; 15:502 –516. Haus HA (1984) Waves and fields in optoeletronics, Prenticle-Hall Inc., Englewood Cliffs, New Jersey. Hickman HD, Bennink JR, Yewdell JW (2009) Caught in the act: intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe 5:13–21. Jasapara J, and Rudolph W (1999) Characterization of sub-10-fs pulse focusing with high- numerical-aperture microscope objectives. Opt Lett 24, 777. Joanne L Yu and Janusz W Rak (2003) Inflammatory and immune cells in tumour angiogenesis and Arteriogenesis. Breast Cancer Res 5:83-88. Jodele S, Blavier L, Yoon JM, DeClerck YA. (2006) Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev. 25:35-43. Jurianz K, von Hoegen P, Schirrmacher V (1998) Superiority of the ear pinna over a subcutaneous tumour implantation site for induction of a Th1-type cytokine response. Cancer Immunol Immunother. Feb;45(6):327-33. Kempe M, Stamm U, Wilhelmi B, and Rudolph W (1992) Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems. J Opt Soc Am B 9, 1158. Kempe M, and Rudolph W (1993) Impact of chromatic and spherical aberration on focusing of ultrashort light pulses by lenses. Opt Lett 18, 137. Kempe M and Rudolph W (1993) Femtosecond pulses in the focal region of lenses. Phys Rev A 48, 4721. Koehl GE, Gaumann A, and Geissler EK (2009) Intravital microscopy of tumor angiogenesis and regression in the dorsal skin fold chamber: mechanistic insights and preclinical testing of therapeutic strategies. Clin. Exp. Metastasis 26(4) , 329–344 Kolman P, Pica A, Carvou N, Boyde A, Cockcroft S, Loesch A, Pizzey A, Simeoni M, Capasso G, Unwin RJ (2009) Insulin uptake across the luminal membrane of the rat proximal tubule in vivo and in vitro. Am J Physiol Renal Physiol. 296: F1219-F1226 Krummel MF, Macara I (2006) Maintenance and modulation of T cell polarity. Nat Immunol. 7:1143–1149. Larson AM, and Yeh AT (2006) Ex-vivo characterization of sub-10-fs pulses. Opt Lett 31, 1681. Lee JH, Chen SY, Yu CH, Chu SW, Wang LF, Sun CK, Chiang BL (2009) Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J Biomed Opt. 14(1):014008. Li C, Pastila RK, Pitsillides C, Runnels JM, Puoris'haag M, Côté D, Lin CP (2010) Imaging leukocyte trafficking in vivo with twophoton- excited endogenous tryptophan fluorescence. Optical Society of America. Li Y, Gonzalez S, Terwey TH, Wolchok J, Li Y, Aranda I, Toledo-Crow R, Halpern AC (2005) Dual Mode Reflectance and Fluorescence Confocal Laser Scanning Microscopy for In Vivo Imaging Melanoma Progression in Murine Skin. Journal of Investigative Dermatology 125, 798–804. Liu TM, Kartner FX, Fujimoto JG, Sun CK (2005) Multiplying the repetition rate of passive mode-locking femtosecond lasers by an intracavity flat surface with low reflectivity. Opt. Lett. 30:439. Matter A (1979) Microcinematographic and electron microscopic analysis of target cell lysis induced by cytotoxic T lymphocytes. Immunology. 36:179–190. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 427:154–159. Millard AC, Wiseman PW, Fittinghoff DN, Wilson K, Squier J, and Muller M (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl. Opt. 38, 7393–7397. Miller MJ, Safrina O, Parker I, Cahalan MD (2004) Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med. 200:847–856. Miller MJ, Wei SH, Cahalan MD, Parker I (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 296:1869–1873. Miller MJ, Wei SH, Cahalan MD, Parker I (2003) Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci U S A. March 4; 100(5): 2604–2609. Minsky M (1957) Microscopy Apparatus, US Patent 03013467. Mrass P, Kinjyo I, Ng LG, Reiner SL, Pure´ E, Weninger W (2008) CD44 mediates successful interstitial navigation by killerTcells and enables efficient antitumor immunity. Immunity. 29(6):971-985. Mrass P, Takano H, Ng LG, Daxini S, Lasaro MO, Iparraguirre A, Cavanagh LL, von Andrian UH, Ertl HC, Haydon PG, Weninger W (2006) Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J Exp Med. 203:2749–2761. Muller M, Squier J, Wolleschensky R, Simon U, and Brakenhoff GJ (1998) Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives. J Microsc 191, 141. Müller M, Squier J, Wilson KR and Brakenhoff GJ (1998) 3D-microscopy of transparent objects using thirdharmonic generation. J. Microsc 191, 266-274. Nakano A (2002) Spinning-disk confocal microscopy—a cutting-edge tool for imaging of membrane traffic. Cell Struct. Funct 27(5), 349–355. Naomi N, Katsutaka O and Hazuhiko M (2003) SST-2 Tumor Implantation is a Useful Model for Studying the Anti-Tumor Immune Response in SHR Rats. Environmental Health and Preventive Medicine 8, 1-5, March. Ng LG, Mrass P, Kinjyo I, Reiner SL, Weninger W (2008) Two-photon imaging of effector T-cell behavior: lessons from a tumor model. Immunological reviews. 221:147–162. Norman K (2005) Techniques: Intravital microscopy—a method for investigating disseminated intravascular coagulation? Trends Pharmacol. Sci. 266, 327–332. Oleksandr C, Luca V, Paolo B, Francesco D, Mustafa S, Lucie K (2009) Imaging of Mouse Experimental Melanoma In Vivo and Ex Vivo by combination of confocal and nonlinear microscopy. Microscopy Research and Technique. 72:6, 411-423. Potter SM (1996) Vital imaging: Two photons are better than one. Current Biology. 6:1595–1598. Pawley, James B., ed. (1995) Handbook of Biological Confocal Microscopy, 2nd ed. Plenum Press. Provenzano PP. et al., (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion'. BMC Med. 4, 38. Qi H, Egen JG, Huang AY, Germain RN (2006) Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science. 312:1672–1676. Roediger B, Ng LG, Smith AL, Fazekas de St Groth B (2008) Weninger W. Visualizing dendritic cell migration within the skin. Histochem Cell Biol. 130:1131–1146. Rothstein TL, Mage M, Jones G, and McHugh LL (1978) Cytotoxic T lymphocyte sequential killing of immobilized allogeneic tumor target cells measured by time-lapse microcinematography. J. Immunol. 121:1652–1656. Sanchez-Madrid F, del Pozo MA (1999) Leukocyte polarization in cell migration and immune interactions. Embo J. 18:501–511. Sanderson CJ (1976) The mechanism of T cell mediated cytotoxicity. II. Morphological studies of cell death by time-lapse microcinematography. Proc. R. Soc. Lond. B. Biol. Sci. 192:241–255. Sako Y, Sekihata A, Yanagisawa Y, Yamamoto M, Shimada Y, Ozaki K, Kusumi A (1997) Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1. J Microsc. 185:9–20. Sandison J (1924) A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat. Rec. 28, 281–287. Schor SL, Haggie JA, Durning P, Howell A, Smith L, Sellwood RA, and Crowther D (1986) Occurrence of a fetal fibroblast phenotype in familial breast cancer. Int J Cancer. Shan S, Sorg B, and Dewhirst MW (2003) A novel rodent mammary window of orthotopic breast cancer for intravital microscopy,” Microvasc. Res. 65: 109–117. Sheppard C, Gannaway J, Kompfner R, Walsh D (1977) The scanning harmonic opticalmicroscope. IEEE J Quantum Electron 13:912–912. Sivridis E, Giatromanolaki A, and Koukourakis MI (2004) Stromatogenesis' and tumor progression. Int J Surg Pathol. 12:1-9. Solt D, Farber E (1976) A new principle for the analysis of chemical carcinogenesis. Nature. 263:701-703. So P, Kim H, Kochevar I (1998) Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt Express 3:339–350. Squier J, Muller M, Brakenhoff GJ and Wilson KR (1998) Third harmonic generation microscopy. Opt. Express 3, 315-324. Squier J and Müller M (2001) High resoluton nonlinear microscopy: A review of sources and methods for achieving optical image, Rev Sci Instrum 72:2855. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol. 17:763–767. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science. 296:1873–1876. Sun CK, Chu SW, Chen SY, Tsai TH, Liu TM, Lin CY, Tsai HJ (2004) Higher harmonic generation microscopy for developmental biology. J.Struct.Bio.147:19 Sun CK, Yu CH, Tai SP, Kung CT, Wang IJ, Yu HC, Huang HJ, Wen-Jeng Lee, and Chan YF(2007) In vivo and ex vivo imaging of intra-tissue elastic fibers using third-harmonic-generation microscopy. Opt. Express 15:11167. Tai SP, Tsai TH, Chu SW, Lee WJ, Huang HY, Liao YH and Sun CK (2005) Harmonics Optical Biopsy of Human Skin,” in Proceeding of Photonics in Dermatology and Plastic Surgery, Photonics West, paper 5686-13, San Jose, CA, USA; Proceedings of SPIE 5686, pp. 51-58. Tai SP, Tsai TH, Lee WJ, Shieh DB, Liao YH, Huang HY, Zhang YJ, Liu HL and Sun CK (2005) Optical biopsy of fixed human skin with backward-collected optical harmonics signals. Opt. Express 13, 8231-8242. Tlsty TD, and Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol. 1:119-50. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat.Rev.Mol.Cell. Biol. May;3(5):349-63. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, and Jain RJ (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors,” Cancer Res.6411, 3731–3736. Tozer GM, Ameer-Beg SM, Baker J, Barber PR, Hill SA, Hodgkiss RJ, Locke R, Prise VE, Wilson I, Vojnovic B (2005) Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv Drug Deliv Rev 57: 135-152. Tsai TH, Tai, SP, Lee WJ, Huang HY, Liao YH, Sun CK (2006) Optical signal degradation study in fixed human skin using confocal microscopy and higher-harmonic optic microscopy. Opt. Express. 14:949. Tsai TH (2005) Multi-modality Laser Scanning Biologic Mucroscopy, Master Thesis, National Taiwan University. Tse JC, Kalluri R (2007) Mechanisms of metastasis: Epithelial-to-mesenchymal transition and contribution of tumor microenvironment. Journal of Cellular Biochemistry 101(4).816-829 Vroom JM, Grauw KJD, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ, Allison C (1999) Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol 65:3502–3511. Williams KJ, Telfer BA, Shannon AM, Babur M, Stratford IJ, Wedge S (2007) Combining radiotherapy with AZD2171, a potent inhibitor of vascular endothelial growth factor signaling: pathophysiologic effects and therapeutic benefit. Mol Cancer Ther. 6( 2):599-606. Williams RM, Zipfel WR, and Webb WW (2005) Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 88:1377-1386. Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett. 242:1-10. Wong SY and Hynes RO(2007) Tumor–Lymphatic Interactions in an Activated Stromal Microenvironment. Journal of Cellular Biochemistry, 101: 840–850. Yasui T, Takahashi Y, Ito M, Fukushima S, and Araki T (2009) Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti:sapphire lasers. Appl. Opt. 48, D88-D95. Yelin D, Silberberg Y (1999) Laser scanning third-harmonic-generation microscopy in biology. OPT Express 3:169. Yelin D, Oron D, Korkotian E, Segal M, Silberberg Y (2002) Third-Harmonic microscopy with a titanium-sapphire laser. Appl. Phys. B 74:S97. Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, and Jain RK (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Research, 54: 4564-4568. Zalatnai A (2006) Molecular aspects of stromal-parenchymal interactions in malignant neoplasms. Curr Mol Med. 6:685-93. Zal T, Chodaczek G (2010) Intravital imaging of anti-tumor immune response and the tumor microenvironment. Semin Immunopathol. Sep;32(3):305-17. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29696 | - |
| dc.description.abstract | 治療腫瘤的方法日新月異,傳統的化學治療不僅殺死腫瘤細胞且會傷害到正常組織,標靶治療藉著專一抗體來辨識腫瘤細胞上特有生物標記,進行選擇性的藥物輸送,可減少傳統化療的副作用。但因腫瘤具有基因表現的多樣性,即使發生在同一個器官上,這些標記也不見得一致。由於標靶治療仍有上述盲點,直接毒殺腫瘤細胞常會無法根除而引起基因突變,這也是產生抗藥性的主要原因。為了解決這個問題,近來科學家努力研究腫瘤成長所必需仰賴的微環境,希望能藉由阻斷腫瘤微環境有關的信息途徑,來抑制腫瘤的生長並防止腫瘤轉移。也因此,研究了解活體內腫瘤與周遭微環境的分子互動過程,是腫瘤信息途徑標靶治療一項重要的基礎研究工作。
本論文利用極低侵入性的鉻貴橄欖石飛秒脈衝雷射,建構一個小動物活體內長時間連續觀察腫瘤微環境的非線性光學顯微術平台,透過二倍頻、三倍頻、以及多光子螢光等生物體內的非線性光學對比,以活體虛擬切片的方式,觀察深埋皮下的腫瘤細胞與被改造的膠原蛋白、免疫細胞的活動、新生血管及其通透度變化等。本論文觀察腫瘤微環境主要的三種互動情境,即腫瘤-基質、腫瘤-血管、與腫瘤-免疫系統的動態演變。我們預料藉著本論文發展出的活體內影像平台,結合螢光分子探針,追蹤信息途徑的時間與空間分布,將是洞察腫瘤分子生物學上很有力的工具,不僅可以用來更進一步了解腫瘤細胞是如何逐步改變其周邊微環境並利用其被改變的周邊微環境來達到腫瘤細胞快速轉移的目的,同時也可利用這技術來驗證並發展出更新的腫瘤治療策略。 | zh_TW |
| dc.description.abstract | Strategies of treatments on cancers evolve with the understanding of their epidemiology and biology. Traditional chemotherapies not only kill cancers, but also do harms to normal tissues. To selectively treat on cancer, target therapies can deliver drugs to the biomarkers over expressed on cancer cells through a specific antibody binding. Because of the polymorphism of genetic phenotype, markers of tumors are quite different even though they grow in the same organ. With this blind spot of chemotherapy, treatments on cancers can further induce the genetic mutation. Therefore, treating cancers with markers just on themselves is not enough. Recently, people start to search markers necessary for the development of tumors. Candidate targets could be the critical ligands or secondary messengers on the transduction pathways among tumor cells, extracellular matrices, blood vessels, and immune cells. Through the blocking of tumor-associated signal transduction in the microenvironment, such pathway-targeting therapy can arrest the tumor growth and prevent tumor metastasis. Therefore, the understanding of the interaction between tumors with surrounding microenvironment in vivo is an important first step and basis for pathway-targeting cancer therapy.
In this thesis, we develop a small animal nonlinear microscopic imaging platform for in vivo, high-resolution, long-term, consecutive observation on tumor microenvironments. It was achieved with the least invasive femtosecond Cr:forsterite laser and a laser scanning microscope. Through this unique platform, we can in vivo investigate three major contexts of tumor microenvironments with sub-micron spatial resolution, that is, the remodeling of collagens, the trafficking of immune cells, and the permeability of neovasculatures. We anticipate thus developed platform with ongoing developments in molecular probes can be a powerful tool to reveal spatial-temporal dynamics of molecular pathways in tumor microenvironments, enhance our understanding of tumor biology, and trigger new therapeutic approaches. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:15:14Z (GMT). No. of bitstreams: 1 ntu-100-R98548051-1.pdf: 10727154 bytes, checksum: eae142c2d2c92831dfda8687b6267707 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝……………………………………………….…….…………………………..I
摘要……………………………………………….……………………….……….II Abstract…………………………………………………………………….……..III Contents……………………………………………………………..…………….IV Chapter 1 Introduction……………………………………………..……………...1 1.1 Recent trends in the treatment of cancer………..………………..…………...1 1.2 Intravital microscopy (IVM) …………………….…….……………..…………4 1.2.1 Conventional method……………..………………………...……………..4 1.2.2 IVM with single-photon confocal laser scanning microscopy..………….…5 1.2.3 IVM with other single photon technique……………………………….......6 1.2.4 IVM with multiphoton nonlinear optical microscopy…….….…..………....7 1.2.5 IVM with Cr:forsterite laser based nonlinear optical microscopy...…….…..9 1.3 The dorsal skin fold window chamber………………………………………….12 1.4 Motivation………………………………………………………………………13 Chapter 2 Basic principles…………………………………….………….……….15 2.1 Confocal microscopy……………………………………….………………...15 2.2 Harmonic generation microscopy.....................................................................17 2.3 Two-photon fluorescence microscopy (2PFM)………………….…...………25 2.4 Tumor microenvironment………………………………………………….....27 Chapter 3 Materials and methods………………………………………………...33 3.1 Laser source and nonlinear optical microscope…………….………………...33 3.1.1 Femtosecond Cr:forsterite laser……………………………….…………33 3.1.2 Nonlinear optical microscope (NLOM)…………….……...……………36 3.2 Tumor cell and cell culture…………………………………………………...39 3.2.1 Melanoma……………………………………………………….…...…..39 3.2.2 Colon cancer……………………………………………………....……..39 3.3 Animal model….…………………………………………….…………….…41 3.3.1 Animal handling and anesthesia………………………….…….………..41 3.3.2 Ear pinna tumor implantation…………………….……………..……….42 3.4 Lipopolysaccharide, Alexa Fluor® 700 Hamster anti-Mouse CD3e and CD8a(Ly-2)MicroBeads…………………..…………….……..….……44 3.4.1 Lipopolysaccharide (LPS)……………………….………………..…..…44 3.4.2 Label T cell with Alexa Fluor® 700 Hamster anti-Mouse CD3e …….…44 3.4.3 Label T cell with CD8a(Ly-2)MicroBeads………………………………45 3.5 Mouse tail vein atheterization ……………………………………....…….….45 Chapter 4 Results and Discussions……………………………………...........…...47 4.1 In vivo NLOM imaging of normal mouse ear………………………..………47 4.2 Two-photon fluorescence spectra and NLOM imaging of tumor cells…..…...49 4.3 Collagen remodeling…………………………………………….………..…..52 4.4 Immune response……………………………………………………...………61 4.4.1 Immune response without labeling………………………………...……..61 4.4.2 In Vivo NLOM imaging of labeled T cells with Alexa Fluor® 700 Hamster anti-Mouse CD3e over lipopolysaccharide induced inflammatory mouse ear ……………………………………………………………………………...63 4.5 Enhanced permeation and angiogenesis……………………………………….69 Chapter 5 Summary………………………………………………………………...75 Reference…………………………………………………………………………….80 | |
| dc.language.iso | en | |
| dc.subject | 非線性光學顯微術 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | Collagen remodeling | en |
| dc.subject | in vivo trafficking of immune cell | en |
| dc.subject | Nonlinear Optical Microscopy | en |
| dc.subject | Tumor Microenvironment | en |
| dc.title | 運用非線性光學顯微術觀察腫瘤環境 | zh_TW |
| dc.title | Observe Tumor Microenvironment with Nonlinear Optical Microscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫啟光(Chi-Kuang Sun),林文澧,田郁文,朱家瑜 | |
| dc.subject.keyword | 非線性光學顯微術,腫瘤微環境, | zh_TW |
| dc.subject.keyword | Tumor Microenvironment,Nonlinear Optical Microscopy,Collagen remodeling,in vivo trafficking of immune cell, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 10.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
