Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29674
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorPei-Chin Tsaien
dc.contributor.author蔡佩秦zh_TW
dc.date.accessioned2021-06-13T01:14:26Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-03
dc.identifier.citationAlder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC (2006) Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17: 1632-1642
Amor JC, Horton JR, Zhu X, Wang Y, Sullards C, Ringe D, Cheng X, Kahn RA (2001) Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J Biol Chem 276: 42477-42484
Antonny B, Beraud-Dufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36: 4675-4684
Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46: 84-101
Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895-907
Behnia R, Panic B, Whyte JR, Munro S (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6: 405-413
Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117-127
Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8: 1476-1485
Catty P, de Kerchove d'Exaerde A, Goffeau A (1997) The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett 409: 325-332
Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL (2004) The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of cell science 117: 711-722
Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147: 1223-1236
Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJ (2010) Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. Journal of cell science 123: 3478-3489
Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR (2006) Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7: 1503-1517
Cherfils J, Menetrey J, Mathieu M, Le Bras G, Robineau S, Beraud-Dufour S, Antonny B, Chardin P (1998) Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392: 101-105
Deitz SB, Rambourg A, Kepes F, Franzusoff A (2000) Sec7p directs the transitions required for yeast Golgi biogenesis. Traffic 1: 172-183
DiDonato RJ, Jr., Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant journal : for cell and molecular biology 39: 403-414
Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008) Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320: 670-673
Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O (2005) Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. Journal of Cell Science 118: 4751-4764
Farge E, Devaux PF (1992) Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J 61: 347-357
Farge E, Ojcius DM, Subtil A, Dautry-Varsat A (1999) Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol 276: C725-733
Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D'Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. Embo J 18: 1480-1491
Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol Biol Cell 18: 295-312
Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12: 1623-1627
Gall WE, Higginbotham MA, Chen C, Ingram MF, Cyr DM, Graham TR (2000) The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Curr Biol 10: 1349-1358
Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14: 2250-2261
Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641: 71-85
Gillingham AK, Munro S (2007) Identification of a guanine nucleotide exchange factor for Arf3, the yeast orthologue of mammalian Arf6. PLoS One 2: e842
Gillingham AK, Whyte JR, Panic B, Munro S (2006) Mon2, a relative of large Arf exchange factors, recruits Dop1 to the Golgi apparatus. J Biol Chem 281: 2273-2280
Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393-404
Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95: 237-248
Goldberg J (1999) Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96: 893-902
Gorelick FS, Shugrue C (2001) Exiting the endoplasmic reticulum. Mol Cell Endocrinol 177: 13-18
Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270: 2901-2905
Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13: 3162-3177
Hua Z, Graham TR (2003) Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol Biol Cell 14: 4971-4983
Jackson CL, Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10: 60-67
Jochum A, Jackson D, Schwarz H, Pipkorn R, Singer-Kruger B (2002) Yeast Ysl2p, homologous to Sec7 domain guanine nucleotide exchange factors, functions in endocytosis and maintenance of vacuole integrity and interacts with the Arf-Like small GTPase Arl1p. Mol Cell Biol 22: 4914-4928
Jones DH, Bax B, Fensome A, Cockcroft S (1999) ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I. Biochem J 341 ( Pt 1): 185-192
Kahn RA (2009) Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 583: 3872-3879
Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261: 7906-7911
Kahn RA, Yucel JK, Malhotra V (1993) ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045-1048
Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K (2002) GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. Traffic 3: 483-495
Kopecka M, Gabriel M (1992) The influence of congo red on the cell wall and (1----3)-beta-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158: 115-126
Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5: 282-295
Lee FJ, Huang CF, Yu WL, Buu LM, Lin CY, Huang MC, Moss J, Vaughan M (1997) Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 272: 30998-31005
Li CC, Chiang TC, Wu TS, Pacheco-Rodriguez G, Moss J, Lee FJ (2007) ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 18: 4420-4437
Liu K, Hua Z, Nepute JA, Graham TR (2007) Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol Biol Cell 18: 487-500
Liu K, Surendhran K, Nothwehr SF, Graham TR (2008) P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 19: 3526-3535
Liu YW, Huang CF, Huang KB, Lee FJ (2005a) Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16: 4024-4033
Liu YW, Huang CF, Huang KB, Lee FJ (2005b) Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16: 4024-4033
Liu YW, Lee SW, Lee FJ (2006a) Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119: 3845-3855
Liu YW, Lee SW, Lee FJ (2006b) Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119: 3845-3855
Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL (2005) E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6: 1142-1156
Lowe SL, Wong SH, Hong W (1996a) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J Cell Sci 109 ( Pt 1): 209-220
Lowe SL, Wong SH, Hong W (1996b) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. Journal of cell science 109 ( Pt 1): 209-220
Lu L, Hong W (2003a) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14: 3767-3781
Lu L, Hong W (2003b) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14: 3767-3781
Lu L, Horstmann H, Ng C, Hong W (2001) Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J Cell Sci 114: 4543-4555
Lu L, Tai G, Wu M, Song H, Hong W (2006) Multilayer interactions determine the Golgi localization of GRIP golgins. Traffic 7: 1399-1407
Medkova M, France YE, Coleman J, Novick P (2006) The rab exchange factor Sec2p reversibly associates with the exocyst. Mol Biol Cell 17: 2757-2769
Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286: 1-51
Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275: 14882-14889
Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR, Rosenwald AG (2004) Yeast ARL1 encodes a regulator of K+ influx. Journal of cell science 117: 2309-2320
Muthusamy BP, Natarajan P, Zhou X, Graham TR (2009) Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta 1791: 612-619
Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11: 1421-1426
Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci U S A 101: 10614-10619
Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20: 153-191
Park SK, Hartnell LM, Jackson CL (2005) Mutations in a highly conserved region of the Arf1p activator GEA2 block anterograde Golgi transport but not COPI recruitment to membranes. Mol Biol Cell 16: 3786-3799
Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL (1999) Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3: 275-285
Peyroche A, Courbeyrette R, Rambourg A, Jackson CL (2001) The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 114: 2241-2253
Peyroche A, Paris S, Jackson CL (1996) Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384: 479-481
Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14: 1240-1254
Pucadyil TJ, Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science 325: 1217-1220
Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. Journal of Cell Science 112 ( Pt 6): 855-866
Ramaen O, Joubert A, Simister P, Belgareh-Touze N, Olivares-Sanchez MC, Zeeh JC, Chantalat S, Golinelli-Cohen MP, Jackson CL, Biou V, Cherfils J (2007) Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors. J Biol Chem 282: 28834-28842
Sakane H, Yamamoto T, Tanaka K (2006) The functional relationship between the Cdc50p-Drs2p putative aminophospholipid translocase and the Arf GAP Gcs1p in vesicle formation in the retrieval pathway from yeast early endosomes to the TGN. Cell Struct Funct 31: 87-108
Schurmann A, Breiner M, Becker W, Huppertz C, Kainulainen H, Kentrup H, Joost HG (1994) Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J Biol Chem 269: 15683-15688
Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG (2004) Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6: 414-419
Sheetz MP, Painter RG, Singer SJ (1976) Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J Cell Biol 70: 193-203
Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 118: 4039-4048
Shin HW, Nakayama K (2004) Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic. J Biochem 136: 761-767
Singer-Kruger B, Lasic M, Burger AM, Hausser A, Pipkorn R, Wang Y (2008) Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution. Embo J 27: 1423-1435
Springer S, Spang A, Schekman R (1999) A primer on vesicle budding. Cell 97: 145-148
Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153-208
Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73: 269-292
Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647-655
Tsai PC, Lee SW, Liu YW, Chu CW, Chen KY, Ho JC, Lee FJ (2008) Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity. J Biol Chem 283: 16915-16927
Tsukada M, Will E, Gallwitz D (1999) Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10: 63-75
Wang CW, Hamamoto S, Orci L, Schekman R (2006) Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J Cell Biol 174: 973-983
Waters MG, Serafini T, Rothman JE (1991) 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248-251
Zahn C, Jaschke A, Weiske J, Hommel A, Hesse D, Augustin R, Lu L, Hong W, Florian S, Scheepers A, Joost HG, Huber O, Schurmann A (2008) ADP-ribosylation factor-like GTPase ARFRP1 is required for trans-Golgi to plasma membrane trafficking of E-cadherin. J Biol Chem 283: 27179-27188
Zhao X, Lasell TK, Melancon P (2002) Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol Biol Cell 13: 119-133
Zhou X, Graham TR (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci U S A 106: 16586-16591
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29674-
dc.description.abstractDrs2p 為一類的P 型三磷酸腺脢,位在高機氏體上且具有翻轉磷脂質絲胺酸(PS)
的能力。Gea2p 為腺嘌呤核苷二磷酸核醣化因子交換因子,會與Drs2p 結合並且
影響Drs2p 翻轉酶的活性。本文我們發現第一腺嘌呤核苷二磷酸核醣化因子相
似蛋白(Arl1p)會和Gea2p 共同去調控Drs2p 的翻轉酶活性。我們發現Drs2p 和
Gea2p 都會去影響Arl1p 的下游基因Imh1p 在細胞中的分佈。Drs2p 會和鳥糞呤
核苷三磷酸 (GTP) 形式的Arl1p 結合,當Drs2p 無法與Arl1p 結合,會影響其翻
轉酶的活性。Gea2p 用利用其N 端與Arl1p 結合,當其無法與Arl1p 結合時,也
會影響高基氏體上磷酸絲氨酸的轉位,但是不會影響到Gea2p 腺嘌呤核苷二磷
酸核醣化因子交換因子的活性。此外,Drs2p 和Gea2p 的結合需要有Arl1p 的存
在。因此我們的研究發現在特定高基氏體位置的Drs2p 活性會被Arl1p 以及Gea2p
所調控並且影響到Imh1p 在高基氏體上的分佈。
zh_TW
dc.description.abstractDrs2p, a resident type 4 P-type ATPase (P4-ATPase), requires for a
phosphatidylserine (PS) flippase activity in the yeast trans Golgi network (TGN) and
plays essential roles in protein transport in the secretory and endocytic pathways. The
Arf activator Gea2p interacts with Drs2p and stimulates its flippase activity in yeast
TGN. Here we show that the ARF-like (ARL) protein, Arl1p, acts with Gea2p to
modulate Drs2p activity at the TGN. We found that gea2- and drs2-null mutants, like
arl1-null, exhibits severe defects in recruitment of Imh1p to the Golgi. Arl1p directly
interacts with N-terminus of Drs2p in a GTP-dependent manner. Deletion of the
Arl1p-interacting region of Drs2p results in a significant decrease of its flippase
activity. In addition, the active form of Arl1p directly interacts with N-terminus of
Gea2p. Deletion of the Arl1p-interacting region GEA2 impaired PS translocation on
the TGN membranes, but appears to keep its GEF function for Arf. Deletion of ARL1
impairs Gea2p-Drs2p interaction. Thus, we infer that subcellular spatial regulation of
flippase Drs2p by Arl1p and Arf-GEF Gea2p controls membrane dynamics at the
trans-Golgi network.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:14:26Z (GMT). No. of bitstreams: 1
ntu-100-D95448007-1.pdf: 7740938 bytes, checksum: 1394cf19c9467a9d1768f4d00228f32c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract --------------------------------------------------4
中文摘要 ---------------------------------------------------5
Abbreviations ---------------------------------------------6
Introduction ----------------------------------------------7
Materials and Methods ------------------------------------25
Results
I. Arl1p associates with the Gea2p and Drs2p -------------41
II. Drs2p and Gea2p may be the effector of Arl1p ---------44
III. Arl1p, Gea2p and Drs2p may form the complex ---------56
Discussion -----------------------------------------------58
Tables
Table 1. Yeast strains used in this study ----------------69
Table 2. Primers used in this study ----------------------70
Figures
Figure 1. The structural GDP/GTP cycle of ARF6 -----------71
Figure 2. Regulation of coated vesicle formation by Arf---72
Figure 3. A model for the Arl3p-Syt1p-Arl1p-Imh1p pathway-73
Figure 4. P4-ATPases in Saccharomyces cerevisiae----------74
Figure 5. Vesicle-mediated protein-transport pathways that require P-type ATPases of the Drs2p family----------------75
Figure 6. Gea2p interacts with active form of Arl1p-------76
Figure 7. Active form of Arl1p interacts with Gea2p and Drs2p --------------- 77
Figure 8. N-terminal region of Gea2p is required for the interaction withactive form of Arl1p----------------------78
Figure 9. Drs2p interacts with active form of Arl1p in vitro--------------------- 79
Figure 10. N-terminal region of Drs2p is essential for the interaction with Arl1p in vivo ---------------------------80
Figure 11. Drs2p or Gea2p partially co-localizes with Arl1p--------------------- 81
Figure 12. Drs2p is not required for proper localization of Arl1p---------------- 82
Figure 13. Arl1p did not affect the localization of GFP-Drs2--------------------- 83
Figure 14. Gea2p does not determine the localization of Arl1p------------------ 84
Figure 15. Drs2p and Gea2p are involved in the localization of Imh1p and Gas1p------------------------------------85
Figure 16. Miss-localization of Imh1p to the cytoplasm of DRS2 mutants---- 86
Figure 17. Arl1p but not Drs2p or Gea2p affects the subcellular distribution of GFP–Gga2.---------------------87
Figure 18. Interaction of Drs2p with Arl1p is required for Golgi localization of Imh1p-------------------------------88
Figure 19. N-terminal region of Gea2p is required for the localization of Imh1p in gea2 mutant cells----------------89
Figure 20. Gea2p and Arl1p interact functionally in yeast cells------------------ 90
Figure 21. Over-expression of Drs2dN170 partial suppress the cold sensitive growth defect of drs2 cells----------------91
Figure 22. NBD-PS flippase activity in TGN membranes requires Arl1p------ 92
Figure 23. Active form of Arl1p is required for stimulation of NBD-PS flippase activity in TGN membranes--------------94
Figure 24. Loss of plasma membrane PS asymmetry in arl1-null cells--------- 95
Figure 25. N-terminal region of Drs2p is required for the activity of Drs2p---- 96
Figure 26. N-terminal region of Gea2p (1-89 AAs) is important for the activity of translocalization of NBD-PS at TGN-----------------------97
Figure 27. Arl1p, Drs2p or Gea2p is required for the interaction between the other proteins--------------------98
Figure 28. Model for the network interactions between Gea2p, Arl1p and Drs2p and mediate the Drs2p fillipase activity-100
Reference -----------------------------------------------101
dc.language.isoen
dc.title第一腺嘌呤核苷二磷酸核醣化因子相似蛋白在
囊泡運輸中的功能性探討
zh_TW
dc.titleCharacterization of ADP-Ribosylation Factor-Like
Protein 1 in vesicle trafficking
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳瑞華,王昭雯,張智芬,鄧述諄
dc.subject.keyword第一腺嘌呤核&#33527,二磷酸核醣化因子相似蛋白,囊泡運輸,zh_TW
dc.subject.keywordArl1p,vesicle trafficking,en
dc.relation.page138
dc.rights.note有償授權
dc.date.accepted2011-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
7.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved