請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29674
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁 | |
dc.contributor.author | Pei-Chin Tsai | en |
dc.contributor.author | 蔡佩秦 | zh_TW |
dc.date.accessioned | 2021-06-13T01:14:26Z | - |
dc.date.available | 2016-10-05 | |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-03 | |
dc.identifier.citation | Alder-Baerens N, Lisman Q, Luong L, Pomorski T, Holthuis JC (2006) Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. Mol Biol Cell 17: 1632-1642
Amor JC, Horton JR, Zhu X, Wang Y, Sullards C, Ringe D, Cheng X, Kahn RA (2001) Structures of yeast ARF2 and ARL1: distinct roles for the N terminus in the structure and function of ARF family GTPases. J Biol Chem 276: 42477-42484 Antonny B, Beraud-Dufour S, Chardin P, Chabre M (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36: 4675-4684 Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46: 84-101 Barlowe C, Orci L, Yeung T, Hosobuchi M, Hamamoto S, Salama N, Rexach MF, Ravazzola M, Amherdt M, Schekman R (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895-907 Behnia R, Panic B, Whyte JR, Munro S (2004) Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6: 405-413 Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117-127 Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8: 1476-1485 Catty P, de Kerchove d'Exaerde A, Goffeau A (1997) The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. FEBS Lett 409: 325-332 Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL (2004) The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of cell science 117: 711-722 Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147: 1223-1236 Chen KY, Tsai PC, Hsu JW, Hsu HC, Fang CY, Chang LC, Tsai YT, Yu CJ, Lee FJ (2010) Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. Journal of cell science 123: 3478-3489 Chen S, Wang J, Muthusamy BP, Liu K, Zare S, Andersen RJ, Graham TR (2006) Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7: 1503-1517 Cherfils J, Menetrey J, Mathieu M, Le Bras G, Robineau S, Beraud-Dufour S, Antonny B, Chardin P (1998) Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature 392: 101-105 Deitz SB, Rambourg A, Kepes F, Franzusoff A (2000) Sec7p directs the transitions required for yeast Golgi biogenesis. Traffic 1: 172-183 DiDonato RJ, Jr., Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. The Plant journal : for cell and molecular biology 39: 403-414 Drin G, Morello V, Casella JF, Gounon P, Antonny B (2008) Asymmetric tethering of flat and curved lipid membranes by a golgin. Science 320: 670-673 Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O (2005) Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. Journal of Cell Science 118: 4751-4764 Farge E, Devaux PF (1992) Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J 61: 347-357 Farge E, Ojcius DM, Subtil A, Dautry-Varsat A (1999) Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol 276: C725-733 Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D'Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. Embo J 18: 1480-1491 Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p-Rcy1p pathway. Mol Biol Cell 18: 295-312 Gall WE, Geething NC, Hua Z, Ingram MF, Liu K, Chen SI, Graham TR (2002) Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr Biol 12: 1623-1627 Gall WE, Higginbotham MA, Chen C, Ingram MF, Cyr DM, Graham TR (2000) The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Curr Biol 10: 1349-1358 Garcia-Mata R, Szul T, Alvarez C, Sztul E (2003) ADP-ribosylation factor/COPI-dependent events at the endoplasmic reticulum-Golgi interface are regulated by the guanine nucleotide exchange factor GBF1. Mol Biol Cell 14: 2250-2261 Gillingham AK, Munro S (2003) Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta 1641: 71-85 Gillingham AK, Munro S (2007) Identification of a guanine nucleotide exchange factor for Arf3, the yeast orthologue of mammalian Arf6. PLoS One 2: e842 Gillingham AK, Whyte JR, Panic B, Munro S (2006) Mon2, a relative of large Arf exchange factors, recruits Dop1 to the Golgi apparatus. J Biol Chem 281: 2273-2280 Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, Kular GS, Daniele T, Marra P, Lucocq JM, De Matteis MA (2004) FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393-404 Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95: 237-248 Goldberg J (1999) Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell 96: 893-902 Gorelick FS, Shugrue C (2001) Exiting the endoplasmic reticulum. Mol Cell Endocrinol 177: 13-18 Herrmann C, Martin GA, Wittinghofer A (1995) Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J Biol Chem 270: 2901-2905 Hua Z, Fatheddin P, Graham TR (2002) An essential subfamily of Drs2p-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol Biol Cell 13: 3162-3177 Hua Z, Graham TR (2003) Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol Biol Cell 14: 4971-4983 Jackson CL, Casanova JE (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10: 60-67 Jochum A, Jackson D, Schwarz H, Pipkorn R, Singer-Kruger B (2002) Yeast Ysl2p, homologous to Sec7 domain guanine nucleotide exchange factors, functions in endocytosis and maintenance of vacuole integrity and interacts with the Arf-Like small GTPase Arl1p. Mol Cell Biol 22: 4914-4928 Jones DH, Bax B, Fensome A, Cockcroft S (1999) ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I. Biochem J 341 ( Pt 1): 185-192 Kahn RA (2009) Toward a model for Arf GTPases as regulators of traffic at the Golgi. FEBS Lett 583: 3872-3879 Kahn RA, Gilman AG (1986) The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J Biol Chem 261: 7906-7911 Kahn RA, Yucel JK, Malhotra V (1993) ARF signaling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045-1048 Kawamoto K, Yoshida Y, Tamaki H, Torii S, Shinotsuka C, Yamashina S, Nakayama K (2002) GBF1, a guanine nucleotide exchange factor for ADP-ribosylation factors, is localized to the cis-Golgi and involved in membrane association of the COPI coat. Traffic 3: 483-495 Kopecka M, Gabriel M (1992) The influence of congo red on the cell wall and (1----3)-beta-D-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158: 115-126 Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5: 282-295 Lee FJ, Huang CF, Yu WL, Buu LM, Lin CY, Huang MC, Moss J, Vaughan M (1997) Characterization of an ADP-ribosylation factor-like 1 protein in Saccharomyces cerevisiae. J Biol Chem 272: 30998-31005 Li CC, Chiang TC, Wu TS, Pacheco-Rodriguez G, Moss J, Lee FJ (2007) ARL4D recruits cytohesin-2/ARNO to modulate actin remodeling. Mol Biol Cell 18: 4420-4437 Liu K, Hua Z, Nepute JA, Graham TR (2007) Yeast P4-ATPases Drs2p and Dnf1p are essential cargos of the NPFXD/Sla1p endocytic pathway. Mol Biol Cell 18: 487-500 Liu K, Surendhran K, Nothwehr SF, Graham TR (2008) P4-ATPase requirement for AP-1/clathrin function in protein transport from the trans-Golgi network and early endosomes. Mol Biol Cell 19: 3526-3535 Liu YW, Huang CF, Huang KB, Lee FJ (2005a) Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16: 4024-4033 Liu YW, Huang CF, Huang KB, Lee FJ (2005b) Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 16: 4024-4033 Liu YW, Lee SW, Lee FJ (2006a) Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119: 3845-3855 Liu YW, Lee SW, Lee FJ (2006b) Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 119: 3845-3855 Lock JG, Hammond LA, Houghton F, Gleeson PA, Stow JL (2005) E-cadherin transport from the trans-Golgi network in tubulovesicular carriers is selectively regulated by golgin-97. Traffic 6: 1142-1156 Lowe SL, Wong SH, Hong W (1996a) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. J Cell Sci 109 ( Pt 1): 209-220 Lowe SL, Wong SH, Hong W (1996b) The mammalian ARF-like protein 1 (Arl1) is associated with the Golgi complex. Journal of cell science 109 ( Pt 1): 209-220 Lu L, Hong W (2003a) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14: 3767-3781 Lu L, Hong W (2003b) Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell 14: 3767-3781 Lu L, Horstmann H, Ng C, Hong W (2001) Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J Cell Sci 114: 4543-4555 Lu L, Tai G, Wu M, Song H, Hong W (2006) Multilayer interactions determine the Golgi localization of GRIP golgins. Traffic 7: 1399-1407 Medkova M, France YE, Coleman J, Novick P (2006) The rab exchange factor Sec2p reversibly associates with the exocyst. Mol Biol Cell 17: 2757-2769 Moller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286: 1-51 Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP (2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem 275: 14882-14889 Munson AM, Haydon DH, Love SL, Fell GL, Palanivel VR, Rosenwald AG (2004) Yeast ARL1 encodes a regulator of K+ influx. Journal of cell science 117: 2309-2320 Muthusamy BP, Natarajan P, Zhou X, Graham TR (2009) Linking phospholipid flippases to vesicle-mediated protein transport. Biochim Biophys Acta 1791: 612-619 Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR (2009) Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat Cell Biol 11: 1421-1426 Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci U S A 101: 10614-10619 Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20: 153-191 Park SK, Hartnell LM, Jackson CL (2005) Mutations in a highly conserved region of the Arf1p activator GEA2 block anterograde Golgi transport but not COPI recruitment to membranes. Mol Biol Cell 16: 3786-3799 Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL (1999) Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3: 275-285 Peyroche A, Courbeyrette R, Rambourg A, Jackson CL (2001) The ARF exchange factors Gea1p and Gea2p regulate Golgi structure and function in yeast. J Cell Sci 114: 2241-2253 Peyroche A, Paris S, Jackson CL (1996) Nucleotide exchange on ARF mediated by yeast Gea1 protein. Nature 384: 479-481 Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, Holthuis JC (2003) Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14: 1240-1254 Pucadyil TJ, Schmid SL (2009) Conserved functions of membrane active GTPases in coated vesicle formation. Science 325: 1217-1220 Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. Journal of Cell Science 112 ( Pt 6): 855-866 Ramaen O, Joubert A, Simister P, Belgareh-Touze N, Olivares-Sanchez MC, Zeeh JC, Chantalat S, Golinelli-Cohen MP, Jackson CL, Biou V, Cherfils J (2007) Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 Arf guanine nucleotide exchange factors. J Biol Chem 282: 28834-28842 Sakane H, Yamamoto T, Tanaka K (2006) The functional relationship between the Cdc50p-Drs2p putative aminophospholipid translocase and the Arf GAP Gcs1p in vesicle formation in the retrieval pathway from yeast early endosomes to the TGN. Cell Struct Funct 31: 87-108 Schurmann A, Breiner M, Becker W, Huppertz C, Kainulainen H, Kentrup H, Joost HG (1994) Cloning of two novel ADP-ribosylation factor-like proteins and characterization of their differential expression in 3T3-L1 cells. J Biol Chem 269: 15683-15688 Setty SR, Strochlic TI, Tong AH, Boone C, Burd CG (2004) Golgi targeting of ARF-like GTPase Arl3p requires its Nalpha-acetylation and the integral membrane protein Sys1p. Nat Cell Biol 6: 414-419 Sheetz MP, Painter RG, Singer SJ (1976) Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J Cell Biol 70: 193-203 Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K (2005) Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 118: 4039-4048 Shin HW, Nakayama K (2004) Guanine nucleotide-exchange factors for arf GTPases: their diverse functions in membrane traffic. J Biochem 136: 761-767 Singer-Kruger B, Lasic M, Burger AM, Hausser A, Pipkorn R, Wang Y (2008) Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution. Embo J 27: 1423-1435 Springer S, Spang A, Schekman R (1999) A primer on vesicle budding. Cell 97: 145-148 Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81: 153-208 Toyoshima C, Inesi G (2004) Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu Rev Biochem 73: 269-292 Toyoshima C, Nakasako M, Nomura H, Ogawa H (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647-655 Tsai PC, Lee SW, Liu YW, Chu CW, Chen KY, Ho JC, Lee FJ (2008) Afi1p functions as an Arf3p polarization-specific docking factor for development of polarity. J Biol Chem 283: 16915-16927 Tsukada M, Will E, Gallwitz D (1999) Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol Biol Cell 10: 63-75 Wang CW, Hamamoto S, Orci L, Schekman R (2006) Exomer: A coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J Cell Biol 174: 973-983 Waters MG, Serafini T, Rothman JE (1991) 'Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles. Nature 349: 248-251 Zahn C, Jaschke A, Weiske J, Hommel A, Hesse D, Augustin R, Lu L, Hong W, Florian S, Scheepers A, Joost HG, Huber O, Schurmann A (2008) ADP-ribosylation factor-like GTPase ARFRP1 is required for trans-Golgi to plasma membrane trafficking of E-cadherin. J Biol Chem 283: 27179-27188 Zhao X, Lasell TK, Melancon P (2002) Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: evidence for distinct functions in protein traffic. Mol Biol Cell 13: 119-133 Zhou X, Graham TR (2009) Reconstitution of phospholipid translocase activity with purified Drs2p, a type-IV P-type ATPase from budding yeast. Proc Natl Acad Sci U S A 106: 16586-16591 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29674 | - |
dc.description.abstract | Drs2p 為一類的P 型三磷酸腺脢,位在高機氏體上且具有翻轉磷脂質絲胺酸(PS)
的能力。Gea2p 為腺嘌呤核苷二磷酸核醣化因子交換因子,會與Drs2p 結合並且 影響Drs2p 翻轉酶的活性。本文我們發現第一腺嘌呤核苷二磷酸核醣化因子相 似蛋白(Arl1p)會和Gea2p 共同去調控Drs2p 的翻轉酶活性。我們發現Drs2p 和 Gea2p 都會去影響Arl1p 的下游基因Imh1p 在細胞中的分佈。Drs2p 會和鳥糞呤 核苷三磷酸 (GTP) 形式的Arl1p 結合,當Drs2p 無法與Arl1p 結合,會影響其翻 轉酶的活性。Gea2p 用利用其N 端與Arl1p 結合,當其無法與Arl1p 結合時,也 會影響高基氏體上磷酸絲氨酸的轉位,但是不會影響到Gea2p 腺嘌呤核苷二磷 酸核醣化因子交換因子的活性。此外,Drs2p 和Gea2p 的結合需要有Arl1p 的存 在。因此我們的研究發現在特定高基氏體位置的Drs2p 活性會被Arl1p 以及Gea2p 所調控並且影響到Imh1p 在高基氏體上的分佈。 | zh_TW |
dc.description.abstract | Drs2p, a resident type 4 P-type ATPase (P4-ATPase), requires for a
phosphatidylserine (PS) flippase activity in the yeast trans Golgi network (TGN) and plays essential roles in protein transport in the secretory and endocytic pathways. The Arf activator Gea2p interacts with Drs2p and stimulates its flippase activity in yeast TGN. Here we show that the ARF-like (ARL) protein, Arl1p, acts with Gea2p to modulate Drs2p activity at the TGN. We found that gea2- and drs2-null mutants, like arl1-null, exhibits severe defects in recruitment of Imh1p to the Golgi. Arl1p directly interacts with N-terminus of Drs2p in a GTP-dependent manner. Deletion of the Arl1p-interacting region of Drs2p results in a significant decrease of its flippase activity. In addition, the active form of Arl1p directly interacts with N-terminus of Gea2p. Deletion of the Arl1p-interacting region GEA2 impaired PS translocation on the TGN membranes, but appears to keep its GEF function for Arf. Deletion of ARL1 impairs Gea2p-Drs2p interaction. Thus, we infer that subcellular spatial regulation of flippase Drs2p by Arl1p and Arf-GEF Gea2p controls membrane dynamics at the trans-Golgi network. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:14:26Z (GMT). No. of bitstreams: 1 ntu-100-D95448007-1.pdf: 7740938 bytes, checksum: 1394cf19c9467a9d1768f4d00228f32c (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Abstract --------------------------------------------------4
中文摘要 ---------------------------------------------------5 Abbreviations ---------------------------------------------6 Introduction ----------------------------------------------7 Materials and Methods ------------------------------------25 Results I. Arl1p associates with the Gea2p and Drs2p -------------41 II. Drs2p and Gea2p may be the effector of Arl1p ---------44 III. Arl1p, Gea2p and Drs2p may form the complex ---------56 Discussion -----------------------------------------------58 Tables Table 1. Yeast strains used in this study ----------------69 Table 2. Primers used in this study ----------------------70 Figures Figure 1. The structural GDP/GTP cycle of ARF6 -----------71 Figure 2. Regulation of coated vesicle formation by Arf---72 Figure 3. A model for the Arl3p-Syt1p-Arl1p-Imh1p pathway-73 Figure 4. P4-ATPases in Saccharomyces cerevisiae----------74 Figure 5. Vesicle-mediated protein-transport pathways that require P-type ATPases of the Drs2p family----------------75 Figure 6. Gea2p interacts with active form of Arl1p-------76 Figure 7. Active form of Arl1p interacts with Gea2p and Drs2p --------------- 77 Figure 8. N-terminal region of Gea2p is required for the interaction withactive form of Arl1p----------------------78 Figure 9. Drs2p interacts with active form of Arl1p in vitro--------------------- 79 Figure 10. N-terminal region of Drs2p is essential for the interaction with Arl1p in vivo ---------------------------80 Figure 11. Drs2p or Gea2p partially co-localizes with Arl1p--------------------- 81 Figure 12. Drs2p is not required for proper localization of Arl1p---------------- 82 Figure 13. Arl1p did not affect the localization of GFP-Drs2--------------------- 83 Figure 14. Gea2p does not determine the localization of Arl1p------------------ 84 Figure 15. Drs2p and Gea2p are involved in the localization of Imh1p and Gas1p------------------------------------85 Figure 16. Miss-localization of Imh1p to the cytoplasm of DRS2 mutants---- 86 Figure 17. Arl1p but not Drs2p or Gea2p affects the subcellular distribution of GFP–Gga2.---------------------87 Figure 18. Interaction of Drs2p with Arl1p is required for Golgi localization of Imh1p-------------------------------88 Figure 19. N-terminal region of Gea2p is required for the localization of Imh1p in gea2 mutant cells----------------89 Figure 20. Gea2p and Arl1p interact functionally in yeast cells------------------ 90 Figure 21. Over-expression of Drs2dN170 partial suppress the cold sensitive growth defect of drs2 cells----------------91 Figure 22. NBD-PS flippase activity in TGN membranes requires Arl1p------ 92 Figure 23. Active form of Arl1p is required for stimulation of NBD-PS flippase activity in TGN membranes--------------94 Figure 24. Loss of plasma membrane PS asymmetry in arl1-null cells--------- 95 Figure 25. N-terminal region of Drs2p is required for the activity of Drs2p---- 96 Figure 26. N-terminal region of Gea2p (1-89 AAs) is important for the activity of translocalization of NBD-PS at TGN-----------------------97 Figure 27. Arl1p, Drs2p or Gea2p is required for the interaction between the other proteins--------------------98 Figure 28. Model for the network interactions between Gea2p, Arl1p and Drs2p and mediate the Drs2p fillipase activity-100 Reference -----------------------------------------------101 | |
dc.language.iso | en | |
dc.title | 第一腺嘌呤核苷二磷酸核醣化因子相似蛋白在
囊泡運輸中的功能性探討 | zh_TW |
dc.title | Characterization of ADP-Ribosylation Factor-Like
Protein 1 in vesicle trafficking | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳瑞華,王昭雯,張智芬,鄧述諄 | |
dc.subject.keyword | 第一腺嘌呤核苷,二磷酸核醣化因子相似蛋白,囊泡運輸, | zh_TW |
dc.subject.keyword | Arl1p,vesicle trafficking, | en |
dc.relation.page | 138 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 7.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。