Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29631
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃天偉
dc.contributor.authorWei-Lun Changen
dc.contributor.author張維倫zh_TW
dc.date.accessioned2021-06-13T01:12:51Z-
dc.date.available2008-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation[1]Keiichi Ohata, “Developments of Gigabit Wireless Links in Japan,” 2003 Gallium Arsenide Integrated Circuit Symposium, pp. 85-88.
[2]K. Ohata, K. Maruhashi, M. Ito, S. Kishimoto, K. Ikuina, T. Hashiguch, K. Ikeda, N. Takahashi, “1.25Gbps Wireless Gigabit Ethernet Links at 60GHz-Band,” 2003 IEEE Radio Frequency Integrated Circuits Symposium, pp.509-512, June 2003.
[3]T. Chen, H. Woesner, Y. Ye, I. Chlamtac, “Wireless Gigabit Ethernet Extension,” Broadband Networks Conf., vol. 1, pp. 425-433, Oct. 2005.
[4]http://www.fcc.gov
[5]K. W. Chang, H. Wang, G. Shreve, J. G. Harrinson, M. Core, A. Paxton, M. Yu, C. H. Chen, and G. S. Dow, “Forward-looking automotive radar using a W-band single-chip transceiver,” IEEE Trans. Microwave Theory and Tech., vol. 43, no. 7, pp. 1659-1668, July 1995.
[6]S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., vol. 40, pp. 2174-2186, Nov. 2005.
[7]H. J. Siweris, A. Werthof, H. Tischer, U. Schaper, A. Schafer, L. Verweyen, T. Grave, G. Bock, M. Schlechtweg, and W. Kellner, “Low-cost GaAs pHEMT MMIC’s for millimeter-wave sensor application,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 2560-2567, Dec. 1998.
[8]H. Shigematsu, T. Hirose, F. Brewer , M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[9]C. H. Doan, S. Emami, A. M. Nikneiad, R. W. Brodersen, “Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 144-155, Jan. 2005.
[10]C. M. Lo, C. S. Lin, and H. Wang, “A miniature V-band 3-stage cascade LNA in 0.13um CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 1254-1263, Feb. 2006
[11]R. Desrosiers, J. Cowles, C. Horn buckle, A. Gutierrez-Aitken and J. Becker, “Monolithic 14GHz wideband InP HBT BPSK modulator,” 1998 Gallium Arsenide Integrated Circuit Symposium, pp. 135-138.
[12]Isabell Telliez, Anne-Marie Counturier, Christian Rumelhard, Christophe Versnaeyen, Philippe Champion and Didier Fayol, “ A compact monolithic microwave demodulator-modulator for 64-QAM digital radio links,” IEEE Trans on Microwave Theory and Technoiques, vol. 39, no. 12, pp. 1947-1954, December 1991.
[13]G. Samuel Dow, Jeff Yang and Kuo-Hsiung Yen, “Vector signal measurement for 38GHz digital radio application,” Microwave Journal, October, 1999.
[14]S. G. Dow, J. M. Yang, K. H. Yen, R. Matreci, E. Spotted-Elk, S. Pettis and L. Trinh, “Vector signal characterization of 38GHz power amplifier with 100Mbps QPSK modulation,” 2000 IEEE International Microwave Symposium Digest, pp. 1847-1850.
[15]AliE. Ashtiani, Sueng-il Nam, Alex d’Espona, Stepan Lucyszyn and IAN D. Robertson, “Direct multilevel carrier modulation using millimeter-wave balanced vector modulators,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2611-2619, December 1998.
[16]Douglas S. McPherson, Hwa-chang Seo, Young-lae Jing, and Stepan Lucyszyn, “110GHz vector modulator for adaptive software-controlled transmitters,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 01, pp. 16-18, January 2001.
[17]A. E. Ashtiani, T. Gokdemir, A. Vilches, Z. Hu, I. D. Robertson and S. P. March, “Monolithic GaAs/InGaP HBT balanced vector modulation for millimeter-wave wireless systems,” 2000 IEEE Radio Frequency Integrated Circuit Symposium Digest, pp. 187-190.
[18]Andrew Weetzei, “A stable 250 to 4000MHz GaAs IQ modulator IC,” 1997 IEEE International Solid-State Circuits Conference Digest, pp. 264-265.
[19]Junji Itoh, Mitsuru Nishitsuji, Osamu Ishikaw and Daisuke Ueda, “2.1GHz direct-conversion GaAs quadrature modulator IC for W-CDMA base station,” 1999 IEEE International Solid-State Circuits Conference Digest, pp. 226-227.
[20]Junji Itoh, Tadayoshi Nakatsuka, Kimihiko Sato, Yasumi Imagawa, Tomoya Uda, Takahiro Yokyama, Masahiro Maeda and Osamu Ishikawa, “A low distortion GaAs quadrature modulator IC,” 1998 IEEE Radio Frequency Circuits Symposium, pp. 55-58.
[21]Angel Boveda, Felix Orilgoso, Jose I. Alonso, “A 0.7-3GHz GaAs QPSK/QAM direct modulator,” IEEE Journal of Solid-State Circuits, vol. 28, no. 12, pp. 1340-1349, December 1993.
[22]A. Alexanian, M. Wu, A. Burgess, Y. Wei and X. Xhang, “A SiGe transceiver chipset for 100Mbps/1Gbps digital communication over cable system,” 2002 IEEE Radio Frequency Integrated Circuits Symposium, pp. 119-122.
[23]Esa Tiiliharju and Kari Halonen, “A 0.75-3.6 GHz SiGe direct-conversion quadrature-modulator,” 2003 European Solid-State Circuits Conference, pp. 565-568.
[24] Esa Tiiliharju and Kari Halonen, “A duadrature-modulator for 0.6-2.6 GHz with frequency doubler,” 2002 IEEE International Symposium on Circuits and Systems, pp. 429-432.
[25]Gabriel Brenna, David Tschopp, Dirk Pfaff and Qiuting Huang, “A 2GHz direct conversion WCDMA modulator in 0.25um CMOS,” IEEE International Solid-State Circuits Conf. Dig., vol. 2, pp. 232-235, 2002.
[26]Yijun Zhou and Jiren Yuan, “A highly integrated CMOS direct digital RF quadrature modulator,” 2003 European Solid-State Circuits Conference, pp. 573-576.
[27]Chung-Yu Wu and Hong-Sing Kao, “A 2-V low-power CMOS direct-conversion quadrature modulator with integrated quadrature voltage-controlled oscillator and RF amplifier for GHz RF transmitter applications,” IEEE Transaction on Circuit and Systems, vol. 49, no. 2, pp. 123-134, February 2002.
[28]Tsunoo Tsukahara and Junzo Yamada, “3 to 5GHz quadrature modulator and demodulator using a wideband frequency-doubling phase shifter,” 2000 IEEE International Solid-State Circuits Conference Digest, pp. 384-385.
[29]Shoji Otaka, Takafumi Yamaji, Ryuichi Fujimoto, Chikau Takahashi and Hiroshi Tanimoto, “A low local input 1.9GHz Si-bipolar quadrature modulator with no adjustment,” IEEE Journal of Solid-State Circuits, vol. 31, no. 1, pp. 30-37, January 1996.
[30]H. Y. Chang, T. W. Huang, H. Wang, Y. C. Wang, P. C. Chao, C. H. Chen, “Broad-Band HBT BPSK and IQ Modulator MMICs and Millimeter-Wave Vector Signal Characterization,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 908-919, March 2004.
[31] H. Y. Chang, P. S. Wu, T. W. Huang, H. Wang, C. L. Chang, G. J. Chern, “Design and Analysis of CMOS Broad-Band Compact High-Linearity Modulators for Gigabit Microwave/Millimeter-Wave Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 20-30, January 2006.
[32]Behzad Razavi, RF Microelectronics, Prentice Hall, 1998
[33]David M. Pozar, Microwave Engineering, Third Edition, Wiley, 2005.
[34]Stephen A. Mass, Microwave Mixers, Second Edition, Artech House, 1993.
[35]P. S. Wu, C. H. Wang, T. W. Huang, H. Wang, “Compact and Broad-Band Millimeter-Wave Monolithic Transformer Balanced Mixers,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 10, pp. 3106-3114, Oct. 2005.
[36]Hong-Yeh Chang, “毫米波反射式調變器之研究及其應用 Research on Millimeter-wave Reflection-type Modulators and Their Applications” 國立台灣大學電信工程研究所博士論文, 民國九十三年六月.
[37]Jeng-Han Tsai, “毫米波發射器線性化及十億位元無線通信系統 Millimeter-wave Transmitter Linearization and Gigabit Wireless Communication Systems” 國立台灣大學電信工程研究所博士論文, 民國九十六年一月.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29631-
dc.description.abstract近年來隨著無線通訊產業的蓬勃發展,微波頻帶已經趨近於飽和,為了追求更寬的頻譜來達到更快傳輸速率及高資料容量的傳輸,寬頻的毫米波頻段提供了解決此問題的途徑,毫米波無線通訊系統提供了相對於微波通訊系統寬頻的優點,且為了更有效的使用頻譜,各種不同且複雜的數位調變方式及方法被發表出來,越複雜的調變方式其所需的線性度越高,且需要更多不同的相位訊號來完成調變的過程,因此高線性度及四相位的調變及解調器將是此篇論文的研究重點,為了達到高整合性,高效能,及低成本的電路設計,我門利用互補式金氧半導體(CMOS)製程來完成此電路設計,因此一小面積的直接降頻(Direct down-conversion)及直接升頻(direct up-conversion)電路將在文中介紹。
近來毫米波十億位元(Gigabit)無線通訊系統是很熱門的一個話題,為了達成此傳輸速率,除了毫米波頻譜的利用是必須的之外,基頻頻譜的頻寬也扮演了很重要的角色,已發表的許多研究中,基頻頻寬(調變頻寬)多受限於1GHz以下,少數能達到1~3GHz,但相對於毫米波頻段所開放的頻帶,似乎較窄頻且有些浪費,因此提高基頻頻寬至6~7GHz,甚至10GHz以上也將於文中描述,因此基頻頻譜的頻寬也將可以大大的改善,不僅十億位元(Gigabit)的資料傳輸速率可以達到,甚至連百億位元(10Gigabit)的資料傳輸速率都有機會達成,將可解決將來對無線通訊系統速率的需求。
zh_TW
dc.description.abstractIn the last new years , as the demands of wireless communication system grows rapidly , the bands of microwave frequency had been saturated with various communication applications . To achieve wider spectrum for high-speed and high-capacity transmission , bands of millimeter-wave frequency are the solution of this problem . The advantage of MMW wireless communication systems is wider bandwidth comparing with microwave communication systems . To utilize the spectrum efficiently , many methods of complexly digital modulation is proposed . The more complex modulation , the higher linearity is required , and more various phase of signals are required to accomplish process of modulation . Therefore high-linearity and quadrature-phase modulator and demodulator are the emphasis of this thesis . For high level of integration , high performance and low cost , this chip is fabricated by the complementary oxide semi-conductor(CMOS) 0.13um process . A compact size of direct down-conversion and direct up conversion circuits will be presented in this thesis .
Gigabit wireless communication system is a popular topic recently . Except the use of millimeter-wave spectrums , base-band bandwidth is also an important role for high-speed transmission . In many proposed papers , the base-band bandwidth is limited below 1GHz , but there are still some papers which demonstrates the base-band bandwidth of 1 to 3 GHz . It seems narrower than the unlicensed millimeter-wave bands . The method of extending base-band bandwidth to 6-7GHz or even higher than 10GHz will be demonstrated in this thesis . Therefore the bandwidth of base-band spectrum is improved . Not only data rate of gigabit per second , but also data rate of 10 gigabit per second will be achieved . It is a solution for speed of wireless communication systems .
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:12:51Z (GMT). No. of bitstreams: 1
ntu-96-R94942076-1.pdf: 2803529 bytes, checksum: 3b7d1b02d6c238ec02ff7f66b76e60ba (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Abstract
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.3 Contributions 4
1.4 Thesis Organization 5
Chapter 2 Principles of IQ Modulators 7
2.1 Modulation Technology 8
2.1.1 Analog Modulation 8
2.1.2 Digital Modulation 9
2.2 Principle of IQ Modem 12
2.3 Choice of Passive Element 15
2.3.1 Power Divider 15
2.3.2 90o hybrid 17
2.3.3 180o hybrid 19
2.4 Summary 20
Chapter 3 Modem for Gigabits Communication 23
3.1 Receiver Architecture 24
3.1.1 Heterodyne Receivers 24
3.1.2 Homodyne Receivers 28
3.2 BPSK Mixer 32
3.2.1 Choice of Mixer Topology 32
3.2.2 Simulation Result of Single Mixer Core 34
3.3 IQ Demodulator 40
3.4 Experimental Results 45
3.4.1 MMW Sub-harmonic IQ Modulator 45
3.4.2 MMW Sub-harmonic IQ Demodulator 52
3.5 Summary 57
Chapter 4 Baseband Bandwidth Analysis 61
4.1 Baseband Bandwidth Research 62
4.1.1 Resistive Mixer 62
4.1.2 Anti-parallel Diode Mixer 63
4.1.3 Circuit Design and Simulation Results 66
4.1.4 The Limitation of Base-band Bandwidth 69
4.2 Improvement of Bandwidth 74
4.2.1 The Method of Extending Base-band Bandwidth 74
4.2.2 Mixer for Gigabits Communication 76
4.3 Summary 82
Chapter 5 Conclusion 85
Reference 87
dc.language.isoen
dc.subject調變器zh_TW
dc.subject基頻頻寬zh_TW
dc.subject混頻器zh_TW
dc.subject解調器zh_TW
dc.subjectmodulatoren
dc.subjectdemodulatoren
dc.subjectbase-band bandwidthen
dc.subjectmixeren
dc.title直接降頻可雙向工作的調變器及解調器之設計及基頻頻寬之研究zh_TW
dc.titleDesign of the Bi-direction Modulator and Demodulator with Direct-conversion Architecture and Base-band Bandwidth Analysisen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張鴻埜,蔡政翰
dc.subject.keyword調變器,解調器,混頻器,基頻頻寬,zh_TW
dc.subject.keywordmodulator,demodulator,mixer,base-band bandwidth,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved