請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29630完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永傳 | |
| dc.contributor.author | Tsung-Lin Yang | en |
| dc.contributor.author | 楊宗霖 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:12:48Z | - |
| dc.date.available | 2014-08-11 | |
| dc.date.copyright | 2011-08-11 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-03 | |
| dc.identifier.citation | 1.J. R. Davis , Davis and Associates ,“Hard Facing, Weld Cladding and Dissimilar Metal Joining”, ASM Handbook. Vol.6 , 10th ed. , 1990 , pp.789-829.
2.“The Selection of Hard facing Alloy”, ASM Handbook, Vol.1 , 8th ed. , 1961 , pp.820-833. 3.K. Holmberg , A. Matthews ,“Coatings Tribology”, Elsevier, Armsterdam , Netherland , 1994 , pp.28-30. 4.陳熹棣,高週波基礎理論與應用,全華科技圖書公司,1995,pp.3-14. 5.李世欽,“高週感應加熱之原理與應用”,金屬熱處理期刊,第7期,1982,pp.13-20. 6.黃德仁,“高週波感應硬化組織與機械性質之研究”,國立成功大學機械工程研究所,碩士論文,1987.7.,pp.2-11. 7.陳意維,“雷射硬面處理與高週波感應表面硬化顯微組織特性之比較分析”,國立成功大學機械工程研究所,碩士論文,1997.5.,pp.15-19. 8.黃振賢,金屬熱處理,文京圖書公司,pp.207-208. 9.陳鴻賓,金屬感應熱處理,復文圖書出版社,1987,pp.183-225. 10.K. C. Antony ,“Wear-Resistant Cobalt-Base Alloys”, Journal of Metals , 1983 , pp.52-60. 11.Metal Handbook , ASM Metals Park , OH , Vol.6 , 9th ed. , 1981 , pp.771-803. 12.Shuji Hattori , Norihiro Mikami ,“Cavitation Erosion Resistance of Stellite Alloy Weld Overlays”, Wear , 2009 , pp.1954-1960. 13.C. Guyard , A. Barbangelo , C. H. Allibert and J. Driole,“Solidification Path and Phase Equilibria in the Liquid-Solid Range of Cobalt-Base Alloy”, Journal of Materials Science , Vol.16 , 1981 , pp.604-612. 14.J. L. Brouwer , D. Coutsiuradis ,“Influence of Tungsten and Carbon Contents on the Microstructure and Properties of a Cobalt-Base Hardfacing Alloy” , Cobalt , No.32 , 1966 , pp.141-147. 15.A. Frenk , M. Vandyoussefi , J. D. Wagniere , A. Zryd , W. Kurz , “Analysis of Laser-Cladding Process for Stellite on Steel”, Metallurgical And Materials Transactions B , Vol.28B , 1997 , pp.501-508. 16.Andre Frenk , Nicolas Henchoz , Wilfried Kurz , “Laser Cladding of a Cobalt-Based Alloy:Processing Parameters and Microstructure”, Z. Metallkd , Vol.84 , No.12 , 1993 , pp.886-892. 17.張書碩、陳鈞,“鈷基合金雷射包覆製程之衝擊磨耗特性研究”,國立臺灣大學材料科學與工程學研究所,碩士論文,2002.6.,pp.81-96. 18.張浩庭,“超高頻感應加熱於鋼料表面被覆鈷基合金的應用”,國立臺灣大學機械工程研究所,碩士論文,2006.6.,pp.20-43. 19.U. Malayoglu , A. Neville , H. Lovelock , “Assessing the Kinetics and Mechanisms of Corrosion of Cast and HIPed Stellite 6 in Aqueous Saline Environments”, Corrosion Science , Vol.47 , 2005 , pp.1911-1931. 20.林蔚祺,“雷射噴覆表面薄層之特性研究”,國立臺灣大學材料科學與工程學研究所,碩士論文,2004.,pp.47-118. 21.X. Zhang , X.S. Xie , Z.M. Yang , J.X. Dong , Y. Gao , Z. Xu , T.H. Zhang ,“A Study of Nickel-base Corrosion Resisting Alloy Layer Obtained by Double Glow Plasma Surface Alloying Technique”, Surface and Coatings Technology , Vol.131 , 2000 , pp.378-382. 22.K.M. Kulkarni ,“Powder Metal Technologies and Applications”, ASM International Materials Park , 1998 , pp.174-175. 23.A. Sandt ,“Flame Sprayed and Fused NiCrBSi Coatings with Additives”, Surfacing J. Inter. , Vol.1 , No. 44 , 1986 , pp.133-137. 24.林國政,“以Nd:YAG雷射表面合金化鎳基及鈷基粉末於7075鋁合金性質之研究”,國立成功大學材料科學及工程學系,碩士論文,2008.6.,pp.22-36. 25.王家瓚、許讚全,“鎳基自熔合金塗層高週波重熔特性研究”,台灣電力公司研究專題,2001,pp.4-8. 26.吳建德,“自熔合金熔射及應用”,電漿熔射塗層應用講習會資料,1991,pp.27-53. 27.AWS committee on brazing and soldering, brazing manual , 3rd ed. , 1975 , pp.21-54. 28.T. Gómez-del Río , M.A. Garrido , J.E. Fernandez , M. Cadenas , J. Rodriquez , “Influence of the Deposition Techniques on the Mechanical Properties and Microstructure of NiCrBSi Coatings”, Journal of Materials Processing Technology , Vol.204 , 2008 , pp.304-312. 29.K. Gurumoorthy , M. Kamaraj , K. Prasad Rao , A. Sambasiva Rao , S. Venugopal ,“Microstructural Aspects of Plasma Transferred Arc Surfaced Ni-based Hardfacing Alloy”, Materials Science and Engineering A , Vol.456 , 2007 , pp.11-19. 30.A. Conde , F. Zubiri , y J. de Damborenea ,“Cladding of Ni-Cr-B-Si Coatings with a High Power Diode Laser”, Materials Science and Engineering A , Vol.334 , 2002 , pp.233-238. 31.M.C. Sahour , A. Bahloul , A.B. Vannes ,“Characteristics of the Laser Clad Metal Made with Powder Mixture of Ni-based Alloy and Tungsten Carbide”, International Journal of Material Forming , Vol.1 , 2008 , pp.1379-1382. 32.J.H. Chang , J.M. Chou , R.I. Hsieh , J.L. Lee ,“Corrosion Behavior of Vacuum Induction-melted Ni-based Alloy in Sulphuric acid”, Corrosion Science , Vol.52 , 2010 , pp.2323-2330. 33.Yongjun Huang , Xiaoyan Zeng , Qianwu Hu , Shengfeng Zhou ,“Microstructure and Interface Interaction in Laser Induction Hybrid Cladding of Ni-based Coating”, Applied Surface Science , Vol.255 , 2009 , pp.3940-3945. 34.E.J. Carrasquero , J. Lesage , E.S. Puchi-Cabera , M.H. Staia ,“Fretting Wear of HVOF Ni-Cr Based Alloy Deposited on SAE 1045 Steel”, Surface&Coatings Technology , Vol.202 , 2008 , pp.4544-4551. 35.Qiang Li , Dawei Zhang , Tingquan Lei , Chuanzhong Chen , Wenzhe Chen ,“Comparison of Laser-clad and Furnace-melted Ni-based Alloy Microstructure”, Surface and Coatings Technology , Vol.137 , 2001 , pp.122-135. 36.J.M. Miguel , J.M. Guilemany , S. Vizcaino ,“Tribological Study of NiCrBSi Coating Obtained by Different Processes”, Tribology International ,Vol.36 , 2003 , pp.181-187. 37.Nicolas Serres , Francoise Hlawka , Sophie Costil , Cecile Langlade , Frederique Machi , Alain Cornet ,“Dry Coatings and Ecodesign Part.2-Tribological Performances”, Surface&Coatings Technology , Vol.204 , 2009 , pp.197-204. 38.M. Yan , W.Z. Zhu ,“Surface Remelting of Ni-Cr-B-Si Cladding with a Micro-beam Plasma Arc”, Surface&Coatings Technology , Vol.92 , 1997 , pp.157-163. 39.張智彬,“熔解條件對Ni-Cr-Si硬面合金顯微組織的影響”,國立義守大學材料科學及工程學系,碩士論文,2004.7.,pp.39-118. 40.鄭瑞米,“鎳基自熔合金重熔處理塗層耐磨性之研究”,國立高雄第一科技大學機械與自動化工程系,碩士論文,2004.7.,pp.30-35. 41.張君華,“真空感應熔融鎳基、鈷基合金顯微組織、磨耗及腐蝕行為研究”,國立義守大學材料科學及工程學系,博士論文,2010.7.,pp.52-74. 42.C.T. Kwok , H.C. Man , F.T. Cheng ,“Cavitation Erosion-Corrosion Behaviour of Laser Surface Alloyed AISI 1050 Mild Steel Using NiCrSiB”, Materials Science and Engineering A , Vol.303 , 2001 , pp.250-261. 43.S.S. Babu , M.K. Miller , J.M. Vitek , S.A. David ,“Characterization of the Microstructure Evolution in a Nickel Base Superalloy during Continuous Cooling Conditions”, Acta Mater. , Vol.49 , 1989 , pp.4149-4160. 44.Anne Neville , Trevor Hodgkiess ,“Electrochemical Study of the Localized Corrosion of Vacuum-Furnace-Fused Cermet Coatings”, J. Am. Ceram. Soc. , Vol.82 , 1999 , pp.2133-2144. 45.Giovanni Bolelli , Luca Lusvarghi , Roberto Giovanardi ,“A Comparison between the Corrosion Resistances of Some HVOF-sprayed Metal Alloy Coatings”, Surface&Coatings Technology , Vol.202 , 2008 , pp.4793-4809. 46.Vander Voort , George F. ,“Metallography Principles and Practice”, McGraw-Hill , New York , USA , 1984 , pp.647-663. 47.M.G. Burke , T.G. Hicks , M.W. Phaneuf ,“Microstructure of a Stellite/Steel Clad Interface”, Microscopy and Microanalysis , Vol.11 , 2005 , pp.2014~2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29630 | - |
| dc.description.abstract | 本研究是將Stellite 6鈷基合金粉末(Co-28Cr-4W-1.1C)和NiCrBSi型的鎳基合金粉末(Ni-14.4Cr-3.2B-4.4Si)事先預敷於中碳鋼及高碳鋼的表面,再用高週波感應加熱進行被覆處理。配合不同的製程參數,利用光學顯微鏡(OM)、電子微探儀(EPMA)與X光繞射分析儀(XRD)分析合金層顯微組織、化學組成以及相的鑑定,並以微硬度試驗機量測合金層的硬度分佈,之後再將試片浸泡於腐蝕液中,觀察其耐腐蝕能力。
研究結果顯示鈷基合金被覆層的組織可以區分為樹狀晶、樹枝間共晶組織及針狀組織三種。被覆層為樹狀晶與樹枝間共晶組織時,樹狀晶內為富鈷相固溶Cr、Fe等元素,共晶組織則為鈷的固溶體與碳化物M7C3,被覆層的硬度會隨著加熱時間增長而降低。但當被覆層中的Fe含量超過40%之後,被覆層組織會轉變為針狀組織,硬度則會隨著加熱時間增長而有升高的趨勢。 鎳基合金被覆層是由γ-Ni、Ni3B、Ni31Si12、CrB、Cr7C3及Ni-Cr-Fe化合物所組成。隨著加熱時間的增長,交界處的Ni-Cr-Fe化合物數量有變多,而CrB與Cr7C3數量則有減少的的趨勢,使得交界處的硬度略微降低。而被覆層中的CrB與Cr7C3隨著加熱時間的增長有粗大化的現象,使得強化相佔的比例增加,造成被覆層的硬度有上升的趨勢。而以高功率短時間進行被覆處理,被覆層中的CrB與Cr7C3數量較多,且單位面積中γ-Ni+Ni3B佔的比例也比較多,使得被覆層的硬度較以低功率長時間進行被覆處理的為高。 經被覆鈷基或鎳基合金的試片對鹽酸、硝酸與硫酸的耐蝕能力都有顯著提升。不論是被覆鈷基或鎳基合金,隨著加熱時間的增長,被覆層的耐腐蝕能力會因為Fe的稀釋率上升而下降。 | zh_TW |
| dc.description.abstract | In this research, Co-based alloy Stellite6(Co-28Cr-4W-1.1C)and Ni-based alloy Deloro60(Ni-14.4Cr-3.2B-4.4Si)were clad on carbon steel using high frequency induction heating. With different processing parameters, the properties of the clad layer were studied through observing the microstructure, measuring the chemical composition and hardness distribution, indentifying the phases in the layer, and conducting the corrosion test.
The results show that the microstructure of Co-based alloy layer can be divided into dendrite, interdendritic eutectics and needle structure. If the microstructure of the clad layer is dendrite and interdendritic eutectics, the matrix is Co-rich solid solution containing chromium, iron and other elements with network M7C3 carbide distributed along the grain boundary. The hardness of the clad layer will decrease with increasing the heating time. However, when the content of iron is more than 40%, the microstructure will transform into needle structure, and the hardness of the clad layer will increase with increasing the heating time. Ni-based alloy layer consists of γ-Ni matrix, Ni3B, Ni31Si12, CrB, Cr7C3 and Ni-Cr-Fe compounds. The interface compound of Ni-Cr-Fe will increase and both CrB and Cr7C3 will decrease with increasing the heating time, leading to a slightly decrease in the hardness near the interface. In the clad layer, the coarsening of CrB and Cr7C3 becomes more obvious as the heating time increases. In other words, the volume fraction of hardening phases(CrB and Cr7C3)increases and lead to the increasing of hardness. High heating power and short heating time will increase the compounds of CrB and Cr7C3 as well as the volume fraction ofγ-Ni and Ni3B ,and lead to increase in hardness of the clad layer. The specimen clad with Co-based alloy or Ni-based alloy has excellent resistance to the corrosion of hydrochloric acid, nitric acid and sulfuric acid. No matter which alloy is clad, the ability of anti-corrosion will decrease with increasing the heating time, owing to the dilution of iron in the clad layer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:12:48Z (GMT). No. of bitstreams: 1 ntu-100-R98522719-1.pdf: 17271737 bytes, checksum: 5f37bfedb1bf87cd7e25ac9e32ca8855 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌 謝...............................I
摘 要..............................II Abstract..........................III 目 錄...............................V 圖 目 錄..........................VII 表 目 錄..........................XII 第一章 前 言........................1 第二章 實驗理論與文獻回顧...........3 2-1感應加熱的原理.................3 2-2高週波感應加熱的三大效應.......4 2-3高週波感應加熱的特點...........6 2-4被覆合金的特性.................7 2-4-1 鈷基合金..................7 2-4-2 鎳基合金.................10 第三章 實驗設備與方法..............13 3-1 實驗規劃.....................13 3-2 實驗設備.....................13 3-2-1 高週波感應加熱裝置.......13 3-2-2 實驗裝置.................15 3-2-3 恆溫槽...................15 3-2-4 實驗儀器.................15 3-3 實驗方法.....................16 3-3-1 試片的種類及前處理.......16 3-3-2 實驗步驟.................16 3-4 被覆處理後的分析及試驗.......17 3-4-1 金相組織觀察.............17 3-4-2 微硬度量測...............17 3-4-3 電子微探儀(EPMA)分析...18 3-4-4 X-ray繞射(XRD)分析....18 3-4-5 耐腐蝕試驗...............19 第四章 結果與討論..................20 4-1以鈷基合金做為被覆材料........20 4-1-1顯微組織觀察..............20 4-1-2電子微探儀(EPMA)分析......22 4-1-3 X-ray繞射分析............24 4-1-4 硬度分佈量測.............25 4-2以鎳基合金做為被覆材料........26 4-2-1 顯微組織觀察.............26 4-2-2 電子微探儀(EPMA)分析...27 4-2-3 X-ray繞射分析............29 4-2-4 硬度分佈量測.............30 4-3耐腐蝕試驗....................31 第五章 結 論.......................34 參考文獻..........................125 | |
| dc.language.iso | zh-TW | |
| dc.subject | 耐腐蝕性 | zh_TW |
| dc.subject | 鈷基合金 | zh_TW |
| dc.subject | 鎳基合金 | zh_TW |
| dc.subject | 高週波感應加熱 | zh_TW |
| dc.subject | 被覆 | zh_TW |
| dc.subject | High Frequency Induction Heating | en |
| dc.subject | Anti-corrosion | en |
| dc.subject | Cladding | en |
| dc.subject | Co-based alloy | en |
| dc.subject | Ni-based alloy | en |
| dc.title | 以超高頻感應加熱於鋼料表面被覆鈷基及鎳基合金的研究 | zh_TW |
| dc.title | Cladding of Cobalt-based and Nickel-based Alloy on Steel Surface Using High Frequency Induction Heating | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃振賢,陳繁雄,周挺正 | |
| dc.subject.keyword | 鈷基合金,鎳基合金,高週波感應加熱,被覆,耐腐蝕性, | zh_TW |
| dc.subject.keyword | Co-based alloy,Ni-based alloy,High Frequency Induction Heating,Cladding,Anti-corrosion, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 16.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
