請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29626
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡定平(Din-Pin Tsai) | |
dc.contributor.author | Chih-Wen Yang | en |
dc.contributor.author | 楊志文 | zh_TW |
dc.date.accessioned | 2021-06-13T01:12:40Z | - |
dc.date.available | 2008-07-26 | |
dc.date.copyright | 2007-07-26 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-20 | |
dc.identifier.citation | 1.1 C. R. Calladine, Horace R. Drew (1997).
Understanding DNA, the molecule and how it works. Acedemic Press Limited, San Diego, USA. 1.2 G.. Binnig, H. Rohrer, C. H. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983) 〝7 × 7 Reconstruction on Si(111) Resolved in Real Space〞. 1.3 G.. Binnig, C. F. Quate, C. H. Gerber, Phys. Rev. Lett. 56, 930 (1986) 〝Atomic Force Microscope〞. 1.4 Y. Martin, H. K. Wickramasinghe, Appl. Phys. Lett. 50, 1455 (1987) 〝Magnetic imaging by ``force microscopy' with 1000 Å resolution〞. 1.5 D. W. Pohl, Advances in Optical and Electron Microcopy edited by C. J. R. Sheppard and T. Mulvey (Academic, London, 1990) pp. 243-312 1.6 Steven W. Meeks, D. Peter, D. Horne, K. Young, and V. Novotny, Appl. Phys. Lett. 55, 1835 (1989), 〝Microscopic imaging of residual stress using a scanning phase-measuring acoustic microscope〞. 1.7 D. M. Eigler and E. K. Schweizer, Nature, 344, 524 (1990). 〝Positioning single atoms with a scanning tunnelling microscope〞. 1.8 J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990). 〝Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air〞. 1.9 M. Antognozzi, M. D. Szczelkun, A. N. Round, M. J. Miles, Single Mol. 3, 105 (2002)〝Comparision between shear force and tapping mode AFM-High resolution imaging of DNA〞. 1.10 Y. Maeda, T. Matsumoto, T. Kawai, Appl. Surf. Sci. 140, 400 (1999). 〝Observation of single- and double-stranded DNA using non-contact atomic force microscopy〞. 1.11 T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991) 〝Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity〞. 1.12 Franz J. Giessibl, Rev. Mod. Phys. 75, 949 (2003) 〝Advances in atomic force microscopy〞. 1.13 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 86, 193108 (2005) 〝True molecular resolution in liquid by frequency-modulation atomic force microscopy〞. 1.14 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 87, 034101 (2005)〝True atomic resolution in liquid by frequency-modulation atomic force microscopy〞. 1.15 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada Rev. Sci. Instrum. 76, 053704 (2005) 〝Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy〞. 1.16 T. Uchihashi, T. Ishida, M. Komiyama, M. Ashino, Y. Sugawara, W. Mizutani, K. Yokoyama, S. Morita, H. Tokumoto and M. Ishikawa, Appl. Surf. Sci. 157, 244 (2000) 〝High-resolution imaging of organic monolayers using noncontact AFM〞. 1.17 C. W. Yang, I. S. Hwang, Y. F. Chen, C. S. Chang and D. P. Tsai, Nanotechnology 18, 084009 (2007)〝Imaging of soft matter with tapping-mode atomic force microscopy and non-contact-mode atomic force microscopy〞. 1.18 Toyoaki Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 266105 (2002), 〝High resolution atomic force microscopic imaging of the Si(111)-7×7 surface: Contribution of short-range force to the image〞. 1.19 Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society, 43, 461 (1931) 1.20 A. Janshoff, M. Neitzert, Y. Oberdörfer, H. Fuchs, Angew. Chem. Int. Ed. 39, 3212 (2000), 〝Force spectroscopy of molecular system-Single molecular spectroscopy of polymers and biomolecules〞. 1.21 Daniel J. Müller, Dimitrios Fotiadis, Simon Scheuring, Shirley A. Müller, and Andreas Engel, Biophysical Journal, 76, 1101 ((1999) 〝Electrostatically Balanced Subnanometer Imaging of Biological Specimens by Atomic Force Microscope〞. 1.22 C. Su, K. L. Babcock and L. Huang: U.S. Patent 6945099 (2005). 〝Torsional resonance mode probe-based instrument and method〞. 1.23 Mayumi Misawa and Michio Ono, Jap. J. Appl. Phys. 45, 1978 (2006) 〝Nanotribology with Torsional Resonance Operation〞. 1.24 M. Reinst¨adtler, T. Kasai, U. Rabe, B. Bhushan and W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005) 〝Imaging and measurement of elasticity and friction using the TR mode〞. 1.25 Toshi Kasai, Bharat Bhushan, Lin Huang and Chanmin Su, Nanotechnology 15, 731 (2004) 〝Topography and phase imaging using the torsional resonance mode〞. 1.26 L. Huang, C. Su: Ultramicroscopy 100, 277 (2004) 〝A torsional resonance mode AFM for in-plane tip surface interactions〞. 1.27 黃英碩,科儀新知,第26卷,第四期,掃描探針顯微術專題。 1.28 果尚志,物理雙月刊,第23卷,第六期,奈米世界的全方位工具。 2.1 Gerhard Meyer and Nabil M. Amer, Appl. Phys. Lett. 53, 1045 (1988) 〝Novel optical approach to atomic force microscopy〞. 2.2 R. Erlandsson, G. M. McClelland, C. M. Mate, and S. Chiang, J. Vac. Sci., Technol. A, 6, 266 (1988).〝Atomic force microscopy using optical interferometry〞. 2.3 S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, Matt Longmire, John Gurley, J. Appl. Phys. 65, 164 (1989) 〝An atomic-resolution atomic-force microscope implemented using an optical lever〞. 2.4 Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987) 〝Atomic force microscope–force mapping and profiling on a sub 100-Å scale〞. 2.5 E. Betzig, P. L. Finn, and J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992). 〝Combined shear force and near-field scanning optical microscopy〞. 2.6 P. Günther, U. C. Fischer, and K. Dransfeld, Appl. Phys. B: Photophys. Laser Chem. 48, 89 (1989)〝Scanning near-field acoustic microscopy〞. 2.7 Hagen Göttlich, Robert W. Stark, Johannes D. Pedarnig, Wolfgang M. Heckl Rev. Sci. Instrum. 71, 3104 (2000) 〝Noncontact scanning force microscopy based on a modified tuning fork sensor〞. 2.8 Francis Ho and Yoshihisa Yamamoto, J. Vac. Sci. Technol. B 16, 43 (1998), 〝Analysis and optimization of force sensitivity in atomic force microscopy using optical and electrical detection〞. 2.9 R. W. Carpick, D. F. Ogletree, and M. Salmeron, Appl. Phys. Lett. 70, 24 (1997), 〝Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy〞. 2.10 P. Maivald, H. J. Butt, S. A. C. Gould, C. B. Prater, B. Drake, J. A. Gurley, V. B. Elings and P. K. Hansma, Nanotechnology 2,.103 (1991),〝Using force modulation to image surface elasticities with the atomic force microscope〞. 2.11 M. Radmacher, R. W. Tillmann, and H. E. Gaub, Biophysical J. 64,735 (1993), 〝Imaging viscoelasticity by force modulation with the atomic force microscope〞. 2.12 Miriam Argaman, Roxana Golan, Neil H. Thomson and Helen G. Hansma, Nucleic Acids Research, 25, 4379 (1997)〝Phase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscop〞. 2.13 K. L. Babcock, C. B. Prater. Veeco Instruments Inc.〝Phase Imaging: Beyond Topography〞. 3.1 原子力顯微儀的原理 (上) (下)林明彥, 張嘉升, 黎文龍 第 148 期 (第 27 卷第 2 期),46–57 頁,2005 年 10 月。 第 149 期 (第 27 卷第 3 期),67–77 頁,2005 年 12 月。 3.2 S. E. Hikin. Mechanics. – Moscow: OGIZ, 1947. – 574 pp. (in Russian). 3.3 D. V. Sivukhin. Mechanics. – Moscow: Nauka, 1989. – 576 pp. (in Russian). 3.4 N. V.Carlov, N. A. Kirichenko, Oscillations, waves, structures. – Moscow: PHYSMATLIT, 2003. – 496 pp. (in Russian). 3.5 T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991) 〝Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity〞. 3.6 S. Morita, R. Wiesendanger and E. Meyer (2002) 〝Noncontact Atomic Force Microscopy〞 (Berlin: Springer-Verlag) 3.7 F. J. Giessible, Science 267 68 (1995) 〝Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy〞. 3.8 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 86 193108 (2005)〝True molecular resolution in liquid by frequency-modulation atomic force microscopy〞. 3.9 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 87, 034101 (2005)〝True atomic resolution in liquid by frequency-modulation atomic force microscopy〞. 3.10 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Rev. Sci. Instrum. 76, 053704 (2005) 〝Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy〞. 3.11 C. Su, K. L. Babcock and L. Huang: U.S. Patent 6945099 (2005). 〝Torsional resonance mode probe-based instrument and method〞. 3.12 Mayumi Misawa and Michio Ono, J. J. Appl. Phys. 45, 1978 (2006) 〝Nanotribology with Torsional Resonance Operation〞. 3.13 M. Reinst¨adtler, T. Kasai, U. Rabe, B. Bhushan and W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005) 〝Imaging and measurement of elasticity and friction using the Trmode〞. 3.14 Toshi Kasai, Bharat Bhushan, Lin Huang and Chanmin Su, Nanotechnology 15, 731 (2004) 〝Topography and phase imaging using the torsional resonance mode〞. 3.15 L. Huang, C. Su: Ultramicroscopy 100, 277 (2004) 〝A torsional resonance mode AFM for in-plane tip surface interactions〞. 3.16 ”原子力顯微鏡矽質探針之製程與量測技術”, 計劃編號:IC930011, 經濟部九十三年度科技研究發展專案。 3.17 M. G. L. Gustafsson and John Clarke, J. Appl. Phys. 76, 172 (1994) 〝Scanning force microscope springs optimized for optical-beam deflection and with tips made by controlled fracture〞. 3.18 Anders Kühle, Alexis H. Sørensen, Jakob Bohr, J. Appl. Phys. 81,6562 (1997)〝Role of attractive forces in tapping tip force microscopy〞. 3.19 Sascha Sadewasser and Martha Ch. Lux-Steiner,Phys. Rev. Lett. 91, 266101 (2003)〝Correct Height Measurement in Noncontact Atomic Force Microscopy〞. 3.20 Y. Martin, C. C. Williams, and H. K. Wickramasinghe, J. Appl. Phys. 61, 4723 (1987),〝Atomic force microscope–force mapping and profiling on a sub 100-Å scale〞. 3.21 U. Dürig, H. R. Steinauer and N. Blanc, J. Appl. Phys. 82, 3641 (1997). 〝Dynamic force microscopy by means of the phase-controlled oscillator method - a comparison between Self Exciting Oscillation mode and Constant Amplitude mode〝. 3.22 Roland E. Best, McGraw Hill, ISBN-0-07-006051-7. 〝Phase Locked Loop - Design, Simulation, & Applications 〞. 4.1 S . Morita, R. Wiesendanger and E. Meyer (2002) Noncontact Atomic Force Microscopy (Berlin: Springer-Verlag) 4.2 Franz J. Giessib, Science 267 68 (1995) 〝Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy〞 4.3 P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, Appl. Phys. Lett. 64 1738 (1994) 〝Tapping mode atomic force microscopy in liquids〞. 4.4 T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991) 〝Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity〞. 4.5 Franz J. Giessibl, Rev. Mod. Phys. 75, 949 (2003) 〝Advances in atomic force microscopy〞. 4.6 Yasuhiro Sugawara, Masahiro Ohta, Hitoshi Ueyama, and Seizo Morita, Science 270 1646 (1995) 〝Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy〞. 4.7 M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, and H.-J. GüntherodtLantz, Science 291, 2580 (2001) 〝Quantitative Measurement of Short-Range Chemical Bonding Forces〞. 4.8 Toyoaki Eguchi and Y. Hasegawa, Phys. Rev. Lett. 89, 266105 (2002), 〝High resolution atomic force microscopic imaging of the Si(111)-7×7 surface: Contribution of short-range force to the image〞. 4.9 T. Eguchi, Y. Fujikawa, K. Akiyama, T. An, M. Ono, T. Hashimoto, Y. Morikawa, K. Terakura, T. Sakurai, M. G. Lagally, and Y. Hasegawa, Phys. Rev. Lett. 93 266102 (2004 ) 〝Imaging of all Dangling Bonds and their Potential on the Ge/Si(105) Surface by Noncontact Atomic Force Microscopy〞. 4.10 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 86, 193108 (2005) 〝True molecular resolution in liquid by frequency-modulation atomic force microscopy〞. 4.11 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 87, 034101 (2005)〝True atomic resolution in liquid by frequency-modulation atomic force microscopy〞. 4.12 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Rev. Sci. Instrum. 76, 053704 (2005) 〝Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy〞. 4.13 S. K. Hung, E. T. Hwu, I. S. Hwang, L. C. Fu 2006 Jap. J. Appl. Phys. 45, 1917 (2005) 〝Postfitting Control Scheme for Periodic Piezoscanner Driving〞. 4.14 W. Saenger (1984) Principles of Nucleic Acid Structure (Berlin: Springer-Verlag) 4.15 F. Moreno-Herrero, J. Colchero and A. M. Baró, Ultramicroscopy, 96, 167 (2003) 〝DNA height in scanning force microscopy〞. 4.16 H. G. Hansma, I. Revenko, K. Kim, and D. E. Laney, Nucleic Acids Res. 24, 713 (1996) 〝Atomic force microscopy of long and short double-stranded, single- stranded and triple-stranded nucleic acids〞. 4.17 J. Tang, J. Li, C. Wang and C. Bai, J. Vac. Sci. Technol. B, 18, 1858 (2000) 〝Enhancement of resolution of DNA on silylated mica using atomic force microscopy〞. 4.18 Y. C. Chang, C. S. Chang, D. C. Wang, M. H. Lee, T. F. Wang, M. Y. Wu, T. Y. Fu and Tien T. Tsong, Jap. J. Appl. Phys. 43, 4517 (2004) 〝Nanoscale Imaging of Biomolecules by Controlled Carbon Nanotube Probes〞. 4.19 D. Bonnel (2001) Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley). 4.20 Y. Maeda, T. Matumoto and T. Kawai, Appl. Surf. Sci, 140, 400 (1999) 〝Observation of single- and double-stranded DNA using non-contact atomic force microscopy〞. 4.21 Hiroshi Sekiguchi, Takaharu Okajima, Hideo Arakawa, Sumihiro Maeda, Akihiko Takashima and Atsushi Ikai, Appl. Surf. Sci, 210, 61 (2003) 〝Frequency shift feedback imaging in liquid for biological molecules〞. 5.1 Virgil B. Elings, John A. Gurley : U. S. Patent 5412980 (1995) 〝Tapping atomic force microscope〞. 5.2 P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, J. Gurley, and V. Elings, Appl. Phys. Lett. 64 1738 (1994) 〝Tapping mode atomic force microscopy in liquids〞. 5.3 T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991) 〝Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity〞. 5.4 Franz J. Giessibl, Rev. Mod. Phys. 75, 949 (2003) 〝Advances in atomic force microscopy〞. 5.5 C. Su, K. L. Babcock and L. Huang: U.S. Patent 6945099 (2005). 〝Torsional resonance mode probe-based instrument and method〞. 5.6 Mayumi Misawa and Michio Ono, Jap. J. Appl. Phys. 45, 1978 (2006) 〝Nanotribology with Torsional Resonance Operation〞. 5.7 M. Reinst¨adtler, T. Kasai, U. Rabe, B. Bhushan and W. Arnold, J. Phys. D: Appl. Phys. 38, R269 (2005) 〝Imaging and measurement of elasticity and friction using the TR mode〞. 5.8 Toshi Kasai, Bharat Bhushan, Lin Huang and Chanmin Su, Nanotechnology 15, 731 (2004) 〝Topography and phase imaging using the torsional resonance mode〞. 5.9 L. Huang, C. Su: Ultramicroscopy 100, 277 (2004) 〝A torsional resonance mode AFM for in-plane tip surface interactions〞. 5.10 Shigeki Kawai, Shin-ichi Kitamura, Dai Kobayashi, Hideki Kawakatsu, Appl. Phys. Lett. 87, 173105 (2005) 〝Dynamic lateral force microscopy with true atomic resolution〞. 5.11 T. Fukuma , M. Kimura, K. Kobayashi , K. Matsushige and H.Yamada, Appl. Phys. Lett. 87, 034101 (2005)〝True atomic resolution in liquid by frequency-modulation atomic force microscopy〞. 5.12 Takaharu Okajima, Hiroshi Sekiguchi, Hideo Arakawa and Atsushi Ikai, Applied Surface Science, 210, 68 (2003) 〝Self-oscillation technique for AFM in liquids〞. 5.13 D. Fotiadis, S. Scheuring, S. A. Mu¨ller, A. Engel, D. J. Muller, Micron, 33, 385 (2002), 〝Imaging and manipulation of biological structures with the AFM〞. 5.14 O. Pfeiffer, R. Bennewitz , A. Baratoff, and E. Meyer, Phys. Rev. B, 65, 161403 (2002) 〝Lateral-force measurements in dynamic force microscopy〞. 5.15 Tanja Drobek, Robert W. Stark, and Wolfgang M. Heckl, Phys. Rev. B, 64, 045401 (2001) 〝Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: Passive overtone microscopy〞. 5.16 K. Yamanaka, A. Noguchi, T. Tsuji, T. Koike and T. Goto, Surf. Interface Anal. 27, 600 (1999) 〝Quantitative Material Characterization by Ultrasonic AFM〞. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29626 | - |
dc.description.abstract | 原子力顯微術已廣泛地應用於物質表面結構與機械特性的研究。靜態模式與輕敲模式是AFM最常用的兩種傳統模式。靜態模式,通常易於造成軟性物質的破壞與影響;而輕敲模式,亦稱振幅調制(amplitude-modulation, AM)模式,其力靈敏度與品質因子(Q值)高度相關,所以,這兩種模式存在許多的問題與缺點,尤其是操作於液體環境下。本論文,使用不同於傳統AFM之模式,以得到較高的力靈敏度與較佳的空間解析度,尤其是針對液體環境成像能力提升。這些另類之AFM模式,利用所謂之〝頻率調制 (frequency-modulation, FM)〞偵測技術,此技術可以量測AFM探針之共振頻率的變化。此外,我們亦提供另一激振方式使探針作一新穎之扭曲運動;此種側向之扭曲式(Torsion mode)振動方式,對比於傳統之彎曲式(Flexure mode)振動。
本論文,以實驗的方式,客觀地討論彎曲式與扭曲式兩種動態模式AFM之特性。我們想要了解何種操作模式可以提供較高的力靈敏度與較佳的空間解析度,也同時針對軟性樣品於液體或原始生理環境進行解析能力的比較。實驗上,我們証實頻率調制偵測技術比傳統之振幅調制偵測技術具有較高之力靈敏度。因此,頻率調制模式,可施以軟性樣品表面較小的作用力,因而可以得到較為真實的表面形貌。此優異之表面形貌解析能力,在液體環境中更是明顯。此外,相較於傳統之輕敲式,扭曲激振模式可以提高表面訊息之對比度(contrast),並可取得更細微之結構訊息。而且,我們更利用實驗室所發展之〝頻率調制扭曲模式AFM( FM-Torsion mode AFM)〞成功地獲得雲母(Mica)原子級表面形貌解析成像。總之,由於〝頻率調制扭曲模式〞之高力靈敏度的特性,可施以軟性樣品表面較小之作用力,以量測表面微小力場變化所造成之表面細微訊息,繼而開創動態模式原子力顯微術新的應用優勢。 | zh_TW |
dc.description.abstract | Atomic force microscopy (AFM) has been widely used to investigate structures and mechanical properties of materials on surfaces. Static force mode and the so-called tapping mode are two most used operation modes. For operation in static force mode, the AFM tip tends to damage or dislodge the soft materials during scanning. The tapping mode is also named as the amplitude-modulation (AM) mode. Its force sensitivity is dependent on the quality factor (Q-factor) of the oscillating cantilever. Therefore, these two modes have some disadvantages, especially for imaging in aqueous environment. In our work, we test alternative methods to achieve a higher force sensitivity and a better spatial resolution as compared with the conventional AFM modes. In these methods, we use the frequency-modulation (FM) detection scheme, which can track the frequency shift of the vibrating cantilever during scanning. Moreover, a new driving mode, torsional-vibration mode, is excited. In this mode, the cantilever vibrates laterally as compared to conventional vertically vibrating in flexural-vibration mode.
We try to make an objective study of the torsional and flexural modes atomic force microscopy. We want to compare which operation mode can provide a higher force sensitivity and a better spatial resolution in ambient environment, especially for soft materials in aqueous or native physical environment. Our results show that the frequency-modulation detection scheme is more sensitive to the conventional amplitude-modulation detection scheme. In the FM mode, the tip exerts a much more gentle force on soft materials and provides a height measurement closer to the true value. Also, the torsional-vibration excitation mode can provide better contrast and more detailed information of the surface region as compared with the tapping mode. The difference is even more prominent in liquid. Moreover, atomic resolution of Mica surface can be obtained with FM-Torsion mode. In summary, by taking advantage of this increased force sensitivity, the FM-Torsion mode allows the measurement of weaker force gradients and opens new applications for dynamic force microscopy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:12:40Z (GMT). No. of bitstreams: 1 ntu-96-D90222019-1.pdf: 3162889 bytes, checksum: c087b06ceb8df266f164d00bc9b38e43 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
內 容 頁 碼 口試委員會審定書 誌謝 中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 第一章、簡介 1.1、顯微術的發展 1 1.2、掃描式探針顯微術發展史 4 1.3、原子力探針顯微術的技術趨勢 6 1.4、論文大綱概要 11 參考資料 11 第二章、原子力顯微術的原理與特微 2.1、原理 15 2.2、系統架構 17 2.3、力學特性量測 22 2.3.1、定性分析 22 2.3.2、定量分析 25 2.4、探針與樣品表面之間的交互作用 27 參考資料 28 第三章、原子力顯微術成像迴饋參數 3.1、探針之構造 32 3.2、受激阻尼自由振盪的探針運動特徵 33 3.2.1、等效運動模式 33 3.2.2、Q值的物理意義的探討 37 3.3、外力作用下探針運動特徵的變化 40 3.4、探針的力靈敏度與反應速度 48 3.5、振幅調制模式與頻率調制模式 50 3.6、扭曲模式原子力顯微術 58 參考資料 60 第四章、頻率調制模式原子力顯微術 4.1、系統架構 64 4.2、樣品製備方法 67 4.3、影像解析結果與分析 68 4.3.1、大氣環境下DNA分子解析成像 68 4.3.2、液體環境下DNA分子解析成像 72 4.3.3、大氣環境下聚苯乙烯球(polystyrene spheres)解析成像 74 4.3.4、液體環境下聚苯乙烯球(polystyrene spheres)解析成像 75 4.4、綜合討論 77 4.5、結論 79 參考資料 80 第五章、頻率調制扭曲式原子力顯微術 5-1、技術背景簡介 84 5.2、系統架構 86 5.3、探針懸臂扭曲式運動之特性量測 88 5.3.1、扭曲運動激發機制 88 5.3.2、探針懸臂作扭曲運動之檢測方法 89 5.3.3、探針作扭曲運動時,在不同環境的Q值 90 5.3.4、扭曲振幅的計算 92 5.4、生物物質影像解析結果與分析 95 5.4.1、樣品的製備 95 5.4.2、液體中生物分子形貌觀測 95 5.4.3、力圖量測結果與分析 98 5.5、Mica表面之原子級結構解析 102 5.5.1、雲母(Mica)結構之簡介 103 5.5.2、雲母(Mica)表面形貌解析 103 5.5.3、力圖量測結果與分析 106 5.6、綜合討論與結論 107 參考資料 110 第六章、結論與未來展望 112 圖目錄 圖1-1. 表示利用不同的探針特性量測表面不同的物理性質。 5 圖1-2. 以Lennard-Jones pair-potential表示兩原子間的距離與相對位能的關係圖。 8 圖1-3. 短程作用力與長程作用力對探針力靈敏度影響之示意圖。 10 圖2-1、AFM原理技術的三大特徵。 15 圖2-2. AFM操作模式之作用力區之定性圖示。 16 圖2-3. AFM三種基本操作模式。 17 圖2-4. AFM系統架構圖。 18 圖2.5. 光槓桿量測機制。 19 圖2-6. LFM呈像原理示意圖。 22 圖2-7. FMM呈像原理示意圖。 23 圖2-8. 相位差顯微術的呈像原理示意圖。 24 圖2-9. 力-距離曲線的關係示意圖。 26 圖3-1. 一般所使用探針的外觀、規格、物理特徵。 33 圖3-2. 懸臂探針的等效運動模式。 34 圖3-3. 無外力作用時,探針懸臂的等效運動模式。 35 圖3-4. 表示探針振幅 與w、b的關係。 37 圖3-5. 表示探針相位 與w、b的關係。 38 圖3-6. 表示探針運動振幅對驅動頻率之響應譜線。 39 圖3-7. 表示外力作用下,探針懸臂之等效運動模型。 41 圖3-8. 受外力作用後,探針振幅與頻率之關係。 44 圖3-9. 受外力作用後,探針相位與頻率之關係。 45 圖3-10.探針懸臂因探針與表面間的交互作用力(此圖以吸引力表示),其頻率—振幅關係圖的化。 52 圖3-11.探針共振頻率隨距離變化之關係曲線。 54 圖3-12.鎖相迴路示意圖。 55 圖3-13.頻率調制模式的三種調制方式之架構示意圖。 57 圖3-14.表示探針懸臂作彎曲運動(a)與扭曲運動(b)。 58 圖4-1. 振幅調制模式(a)與頻率調制模式(b)的架構示意圖 65 圖4-2. 表示DNA固定於Mica表面方法之示意圖。 67 圖4-3. 大氣下,雙股DNA物理性吸附於HOPG表面的量測結果。 69 圖4-4. 表示,水中,雙股DNA物理性吸附於Mica表面的量測結果。 72 圖4-5. 表示,大氣下,聚苯乙烯球舖於HOPG表面之形貌影像。 74 圖4-6. 表示,水中,聚苯乙烯球舖於HOPG表面的量測結果。 76 圖5-1. 表示FM-Torsion mode AFM之迴饋量測系統架構圖。 87 圖5-2. 表示探針懸作扭曲運動的激發方式示意圖。 88 圖5-3. 扭曲式激振機構改裝圖。 89 圖5-4. 表示以PSPD檢測探針懸臂運動形式之方式。 90 圖5-5. 一般輕敲式探針在大氣與水中的振動曲線變化。 91 圖5-6. 探針懸臂作扭曲運動在大氣與水中的振動曲線變化。 91 圖5-7. 表示以接觸模式量取探針之側向位移量。 93 圖5-8. (a)與(b)分別表示,在水中,由FM-Torsion模式與FM-Flexure模式量測之DNA形貌影像。 96 圖5-9. (a)與(b)分別表示分別由圖5-8(a)與(b)中沿箭頭所示之虛線所量測之DNA/Mica表面之剖面高度分析。 97 圖5-10.表示FM-Torsion模式下所量測DNA/Mica表面之力圖曲線。 99 圖5-11.表示FM-Flexure模式下所量測DNA/Mica表面之力圖曲線。 100 圖5-12.表示FM-Torsion模式與FM-Flexure模式下所量測DNA/Mica表面之力圖曲線。 102 圖5-13.表示Mica的晶體結構圖 (a) a-axis方向結構示意圖 (b)撕開之Mica晶格表面結構。 103 圖5-14.表示FM-Torsion 模式在水中所取得之Mica表面之原子級形貌影像。 104 圖5-15.表示量取圖6-10之箭頭虛線所示之Mica表面剖面高度。 105 圖5-16.表示FM-Torsion模式下,在水中所量測Mica表面之力圖曲線。 106 | |
dc.language.iso | zh-TW | |
dc.title | 彎曲式與扭曲式原子力顯微術之研究與應用 | zh_TW |
dc.title | Study and Applications of Flexural mode and Torsional mode
Atomic Force Microscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 黃英碩(Ing-Shouh Hwang),張嘉升(Chia-Seng Chang),陳銘堯(M. Y. Chern),林鶴南(Heh-Nan Lin) | |
dc.subject.keyword | 原子力顯微術,振幅調制模式,頻率調制模式,扭曲共振模式, | zh_TW |
dc.subject.keyword | atomic force microscopy,amplitude-modulation mode,frequency-modulation mode,torsion-resonance mode,TR-mode, | en |
dc.relation.page | 115 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。