Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29607
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorYu-Hsun Leeen
dc.contributor.author李侑勳zh_TW
dc.date.accessioned2021-06-13T01:12:02Z-
dc.date.available2013-09-01
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-08-03
dc.identifier.citation[1] 杜紫宸、詹文男, '2015台灣展業願景與策略(2009版),' 工業技術研究院、產業經濟與趨勢研究中心、資訊工業策進會, 2009.
[2] Optical Microscopy Primer. Available: http://micro.magnet.fsu.edu/primer/museum/janssen.html
[3] J. J. M. Braat, 'Abbe sine condition and related imaging conditions in geometrical optics,' Delft, Netherlands, 1997, pp. 59-64.
[4] E. Hecht, Optics 4th ed., Ch. 13.2 (Addison-Wesley, 2002) & J. W. Goodman, Introduction to Fourier Optics 3rd ed., Ch. 6.5 (Roberts & Company, 2005).
[5] E. H. Synge, 'Suggested method for extending microscopic resolution into the ultramicroscopic region,' Philosophical Magazine 6, 356 (1928).
[6] E. H. Synge, 'An application of piezoelectricity to microscopy,' Philosophical Magazine 13, 297 (1932).
[7] J. A. O'Keefe, 'Resolving power of visible light,' Journal of the Optical Society of America 46, 359 (1956).
[8] E. A. Ash and G. Nicholls, 'Super-resolution aperture scanning microscope,' Nature 237, 510 (1972).
[9] G. Binning, et al., 'Surface studies by scanning tunneling microscopy,' Phys. Rev. Lett. 49, 57 (1982).
[10] G. Binning, et al., 'Atomic Force Microscope,' Phys. Rev. Lett. 56, 930 (1986).
[11] D. W. Pohl, 'Optical near-field scanning microscope,' U. States, ed. (IBM, Switzerland, 1986).
[12] U. Durig, et al., 'Near-field optical-scanning microscopy,' Appl. Phys. Lett. 59, 3318 (1986).
[13] 陳志豪, '近場外差干涉儀的設計與研製,' 2007.
[14] M. A. Paesler and P. J. Moyer, Near-Field Optics Theroy, Instrumentation, and Applications(John Wiley & Sons, Inc., New York, 1996).
[15] E. Betzig, et al., 'Collection near-field scanning optical microscopy,' Appl. Phys. Lett. 51, 2088 (1987).
[16] R. C. Reddick, et al., 'New form of scanning optical microscopy,' Phys. Rev. B 39, 767 (1989).
[17] F. Zenhausern, et al., 'Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,' Science 269, 1083 (1995).
[18] J. Koglin, et al., 'Scanning near-field optical microscopy with a tetrahedral tip at a resolution of 6 nm,' Journal of Biomedical Optics 1, 75 (1996).
[19] G. A. Valaskovic, et al., 'Parameter control, characterization, andoptimization in the fabrication of optical fiber near-field probes,' Appl. Opt.34, 1215-1228 1995.
[20] A. A. Tseng, 'Recent developments in nanofabrication using scanning near-field optical microscope lithography,' Optics & Laser Technology, vol. 39, pp. 514-526, 2007.
[21] S. Kwon, et al., 'Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,' Ultramicroscopy, vol. 105, pp. 316-323, 2005.
[22] Y. Wang, et al., 'Plasmonic nearfield scanning probe with high transmission,' Nano Letters, vol. 8, pp. 3041-3045, Sep 2008.
[23] 汪治平. 超快雷射與超強電磁場. Available: http://ejournal.stpi.narl.org.tw/NSC_INDEX/Journal/EJ0001/9406/9406-11.pdf
[24] Y. Lin, et al., 'Surface nanostructuring by femtosecond laser irradiation through near-field scanning optical microscopy,' Sensors and Actuators a-Physical, vol. 133, pp. 311-316, Feb 2007.
[25] N. Murphy-DuBay, et al., 'Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,' Optics Express, vol. 16, pp. 2584-2589, Feb 2008.
[26] A. Chimmalgi, et al., 'Nanoscale rapid melting and crystallization of semiconductor thin films,' Nano Letters, vol. 5, pp. 1924-1930, Oct 2005.
[27] G. Wysocki, et al., 'Near-field optical nanopatterning of crystalline silicon,' Applied Physics Letters, vol. 84, pp. 2025-2027, 2004.
[28] 王筑顗, '整合次波長圓環型孔洞與準分子雷射開發高深寬比光學鑽孔儀的先導性研究:以三維積體電路矽導通孔為應用平台,' 國立臺灣大學工學院應用力學研究所碩士論文, 2009.
[29] C. Genet and T. W. Ebbesen, Nature (London) 445, 39 2007.
[30] L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, Nano Lett. 9, 235 (2009).
[31] Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[32] F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, Nano Lett. 8, 2469 (2008).
[33] T.-D. Cheng, et al., 'Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams,' Optics Express, vol. 17, pp. 5330-5339, 2009.
[34] D.-Z. Lin, et al., 'Subwavelength nondiffraction beam generated by a plasmonic lens,' Applied Physics Letters, vol. 92, pp. 233106-3, 2008.
[35] Y. Yuh-Yan, et al., 'A Study of the Long Propagation Range Bessel Beam Generated by a Subwavelength Annular Aperture Structure,' 2008, p. JWD37.
[36] 鄭琮達, '次波長超長焦深光束直寫儀的研究與開發:從奈米光學元件的理論與製造到系統性能驗證之研究,' 博士, 國立台灣大學應用力學研究所博士論文, 2009.
[37] 不確定性原理. Available: http://zh.wikipedia.org/zh-hk/%E4%B8%8D%E7%A1%AE%E5%AE%9A%E6%80%A7%E5%8E%9F%E7%90%86
[38] J. Durnin, et al., 'Diffraction-Free Beams,' Phys. Rev. Lett. 58, 1499-1501 (1987).
[39] D. McGloin and K. Dholakia, 'Bessel beams: diffraction in a new light,' Contemporary Physics 46, 15-28 (2005).
.
[40] M. Kohno and Y. Matsuoka, 'Microfabrication and Drilling Using Diffraction-Free Pulsed Laser Beam Generated with Axicon Lens,' SME International Journal Series B Fluids and Thermal Engineering 47, 497-500 (2004).
.
[41] 方俊傑, '以連續數值孔徑模式陳述次波長圓環光學效應的適切性研究,' 應用力學硏究所 (國立臺灣大學,台北,2008)。
[42] C. Lopez-Mariscal, et al., 'Production of high-order Bessel beams with a Mach-Zehnder interferometer,' Appl. Optics 43, 5060-5063 (2004).
[43] J. Arlt and K. Dholakia, 'Generation of high-order Bessel beams by use of an axicon,' Opt. Commun. 177, 297-301 (2000).
[44] H. A. Bethe, Theory of diffraction by small holes, vol. Physical Review 66, 163-182 (1944).
[45] T. W. Ebbesen, et al., Extraordinary optical transmission through sub-wavelength hole arrays, vol. Nature 391, 667-669 (1998).
[46] T. Thio, et al., 'Surface-plasmon-enhanced transmission through hole arrays in Cr films,' J. Opt. Soc. Am. B 16, 1743-1748 (1999).
.
[47] H. F. Ghaemi, et al., 'Surface plasmons enhance optical transmission through subwavelength holes,' Phys. Rev. B 58, 6779-6782 (1998).
[48] D. E. Grupp, et al., 'Crucial role of metal surface in enhanced transmission through subwavelength apertures,' Applied Physics Letters 77, 1569-1571 (2000).
[49] D.-Z. Lin, 'Theory and Experiments of Plasmonic Optical Components for Nano Writer,' Institute of Applied Mechanics (NTU, Taipei, 2007).
.
[50] C. K. Chang, et al., 'Experimental analysis of surface plasmon behavior in metallic circular slits,' Appl. Phys. Lett 90, 061113 (2007).
[51] B. E. A. Saleh, Fundamentals of photonics. Hoboken, N.J. :: Wiley-Interscience, 2007.
[52] 吳曜東, 光纖原理與應用 vol. 全華科技圖書. 台北, (民88年2月).
[53] 光導纖維. Available: http://zh.wikipedia.org/wiki/%E5%85%89%E5%B0%8E%E7%BA%96%E7%B6%AD
[54] Frank L. Pedrotti, et al., 'Introduction to optics,' Prentice Hall, U.S.,1993.
[55] CVI Melles Griot, High-Performance Diode Laser Systems, 56 RCS Series. Available: http://www.cvimellesgriot.com/products/Documents/Downloads/56RCSHigh.pdf
[56] THORLABS. Manual Filter Wheel Mounts with Neutral Density Filters. Available: http://www.thorlabs.hk/catalogpages/v20/312.pdf
[57] Uniblitz, Mechanical Shutter Model LS3Z2. . Available: http://www.uniblitz.com/resources_filelibrary/ls2-3-6_10_16_08.pdf
[58] Digital VHX Microscope http://www.keyence.com.tw/products/microscope/microscope/microscope.php.
[59] 陳徳薰, '進場光纖微影及延伸石英管奈米直寫儀之前導性研究,' 碩士論文, 工學院工程科學及海洋工程學研究所, 國立台灣大學, 2010.
[60] Overview of Photolithography. Available: http://science.nchc.org.tw/old_science/j_TeacherLearn/experiment/experiment_1.pdf
[61] '光阻塗佈機(Laurell spin coater)使用指導書http://nems.ntu.edu.tw/NEMS-2008/images/stories/NMC-W-1102.pdf.'
[62] 國立臺灣大學工學院暨電機資訊學院奈米機電系統研究中心. 物質安全資料表:TMAH. . Available: http://nems.ntu.edu.tw/NEMS-2008/images/stories/sds/TMAH.pdf
[63] DOW CORNING, SYLGARDR 184 Silicone Elastomer Kit. . Available: http://www2.dowcorning.com/DataFiles/090007c88020bcca.pdf
[64] Sil-more Industrial Ltd., Potting & Encapsulant: Silicone. . Available: http://www.silmore.com.tw/product-app-02PE.htm
[65] Sutter Instrument, GLASS CAPILLARY TUBING. Available: http://www.sutter.com/PDF/SutterCatalog.pdf
[66] Quorum Technologies, K575X Sputter Coater Instruction Manual. . Available: http://www.quorumtech.com/pdf/currentProductInstructionManuals/K575X_Instruction_Manual.pdf
[67] 工業技術研究院奈米共同實驗室,雙粒子束聚焦式離子束顯微切割儀(DB-FIB). Available: http://www.nanolab.itri.org.tw/lab/EquSingledetail.aspx?nano_equno=81077400009
[68] Heraeus, HSQ300. Available: http://base-materials.heraeus-quarzglas.com/media/webmedia_local/media/dokumente/CFQ099_HSQ100_300_700_fusedquartzglass.pdf
[69] T. D. Cheng, et al., 'Propagation characteristics of silver and tungsten subwavelength annular aperture generated submicron non-diffraction beams ' Opt. Express 17, 5330-5339 2009.
[70] (1986). K. T. Flaming, D. G. Brown, Advanced Micropipette Techniques for Cell Physiology, Wiley Interscience, Chichester.
[71] G. A. Valaskovic, et al., 'Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,' APPLIED OPTICS, Vol. 34, No. 7, 1995.
[72] Polymicro Technologies, Flexible Fused Silica Capillary Tubing. . Available: http://www.polymicro.com/products/capillarytubing/products_capillarytubing_tsp_tsg.htm
[73] L. S. Inc. Choosing between symmetric and anti-symmetric BCs. Available: http://www.lumerical.com/fdtd_online_help/user_guide_symmetric_anti_symmetric.php
[74] H. D. J. Fu and W. Fang, 'Subwavelength focusing of light by a tapered microtube,' Applied Physics Letters 97, 041114, 2010.
[75] M. I. Haftel, et al., 'Role of cylindrical surface plasmons in enhanced transmission,' Appl. Phys. Lett. 88, 193104, 2006.
[76] M. I. Haftel, et al., 'Enhanced transmission with coaxial nanoapertures:Role of cylindrical surface plasmons,' Phys. Rev. B 74, 235405, 2006.
[77] D. Z. Lin, et al., 'Subwavelength nondiffraction beam generated by a plasmonic lens,' Appl. Phys. Lett. 92, 233106, 2008.
[78] A. S. van de Nes, et al., vol. Rep. Prog. Phys. 69, 2323 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29607-
dc.description.abstract近年來,在近場光學研究領域中,對於如何將近場的光學特性延伸到遠場操作,進而取代近場光學因光點小使聚焦短難以操控的缺點,有許多的研究與探討,而研究發現許多方法可以產生具有長焦深特性與突破繞射極限可能性的貝索光束,其中週期性結構為較常見的方法之一,傳統上是在同心圓的周期性結構上鍍上能產生表面電漿的金屬膜以提升出光效率及指向性。而本研究團隊改良傳統做法,提出利用微機電技術製作單圓環次波長圓環孔徑的光學頭,產生具有次波長光點大小的貝索光束並整合至奈米直寫儀系統作曝光微影及雷射鑽孔的應用,也證實置換鍍膜為不能產生表面電漿效應的鍍膜金屬也可產生類似貝索光束。
故本研究承襲先前團隊研究利用中空微管加熱拉針的方式製作光學頭,從材料、內外徑選擇、拉針機參數調整、鍍膜方式、光學頭前端與末端的光學表面處理確保入射光與出射光品質到中空部分阻塞使光能在圓環材質中經由波導方式傳遞,製作出具有高穿透率及微米尺寸的單圓環光學頭。此種利用非微機電的製作方式無疑能大大減少傳統利用微機電技術所花的製作成本與時間。
此外,本研究利用有限時域差分法光學模擬軟體模擬針對傳統次波長圓環孔徑結構到實際製作的光學頭進行各種參數模擬,包含實際內外徑的討論以確保選擇較好的內外徑比材料、外壁鍍膜與表面電漿效應的關係、中心阻塞有無對出光的效應及圓環出光的狹縫理論,目的是希望能找出最佳的製作方式。而分析實際光學頭模擬出光光強結果,顯示其可產生次波長光點大小與長焦深的貝索光束。
接著,將光學頭整合至自行架設的光強與曝光系統,並利用自製六軸顯微鏡與曝光夾具在人機軟體操控下進行光強與曝光的實驗。在光強實驗中,分析不同類型光學頭的優缺點與各位置的出光光強分布,討論聚焦效應並與模擬結果比較,了解實際出光與模擬出光的相同與相異性,證明光學頭能產生與模擬相符合的貝索光束特性。最後在曝光實驗中,成功利用正光阻紀錄光束樣貌,證實光束具有高深寬比結構,同時也證明光學頭不僅出光具有長焦深貝索光束特性,其聚焦能量也足以被光阻紀錄,且為了量測高深寬比結構,本研究也利用各種量測方式,進行優缺點討論與比較,使能夠用適當的量測技術得到完整的曝光資訊。
zh_TW
dc.description.abstractRecently, many studies have explored the approaches to circumvent the difficulty of short depth-of-focus (DOF) associated with near-filed optical system. Researchers found that the long DOF of Bessel beam is one convenient method to achieve long DOF while maintaining the small spot size as many methods exist to generate the Bessel beam. One method is to use concentric periodic structures, which traditionally were made of coated surface plasmonic metallic film, to enhance emitted light beam efficiency and directivity. The NTU Nano-Bio-Mems group proposed that the single Sub-wavelength Annular Aperture (SAA) structure based plasmonic metallic or non-plassmonic metallic film structure can serve as an optical head to generate sub-wavelength focus spot and long DOF Bessel beam, which can then be integrated to create an nano-writter system so as to facilitate exposure for lithography and many other applications.
Taking previous researches that utilized hollow tube (HT) to form tapered micro-annular optical head by pulling as a starting point in this study, various design parameters include choice of materials, the inner and outer diameters, puller processing parameters, coating methods, tip and end of optical head optical surface processing methods to maintain emitted light beam quality, and hollow part blocking approaches were tried with an attempt to optimize light beam transmission through the annular material by HT formed waveguide. This optical head not only has high transmission property but also is low cost since no MEMS processeses were involved in fabricating it.
Finite Difference Time Domain (FDTD) method was used to perform a series of simulations on the possibilities of forming SAA by tapered micro-annular optical head. Discussions on optimizing the HT design parameters such as inner and outer diameter ratio, relationship of outer coating and the existence of plasmonic effects, effect of hollow part blocking process, verifications of slit theory and influence of SAA emitted beam interference, etc. were presented. All these simulations were performed with an attempt to find the best way of making an optical head . The simulation results performed by using the real micro-annular optical head parameters demonstrated sub-wavelengh focal spot and long DOF Bessel beam was achieved.
In addition, the newly developed tapered micro-annular optical head was used to create a home-made optical intensity metrology system, an exposure lithography system, etc. by using a home-made microscope and an exposure holder. These newly developed systems were controlled by using LabVIEW. In the intensity metrology experiment, the advantages and disadvantages of using different materials to create the optical head were analyzed. Intensity distribution at different positions were also measured. The results showed that the intensity data recorded by CCD matched well with the simulation results. A slilght difference on the DOF was identified. Finally, the exposure experiments showed that structures with aspect ratio higher than 10 were successfully fabricated within the AZ4620 photoresist. These results showed that the optical head not only creates long DOF Bessel beam but also emits focused light beam with energy strong enough to expose photoresist. In order to measure the high aspect ratio structures fabricarted, various methods and techniques were attempted in this study. The advantages and disadvantages of these techniques were compared with an attempt to identify the proper metrology technique for verifying the geometry of the structures exposed, which is important for full exposure experiments in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:12:02Z (GMT). No. of bitstreams: 1
ntu-100-R98543001-1.pdf: 10955355 bytes, checksum: 330bd723f361718a25259c70780faa7a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xvii
第一章 序論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.2.1 光學顯微鏡與繞射極限 3
1.2.2 近場光學與近場光學顯微鏡 6
1.2.3 探針製作演進與拉針技術 7
1.2.4 近場光學顯影技術 8
1.2.5 次波長圓環孔徑結構與曝光系統 11
1.3 研究動機 13
1.4 論文架構 14
第二章 原理 15
2.1 狹縫理論 15
2.2 貝索光束 16
2.3 SAA結構異常穿透現象 20
2.4 光纖傳遞模態與波導 21
第三章 實驗系統與架構 26
3.1 光路系統 26
3.1.1 雷射光源 26
3.1.2 光學衰減濾鏡 26
3.1.3 電子快門 27
3.1.4 精密位移平台 27
3.1.5 數位顯微鏡 28
3.1.6 自製橫向式顯微鏡 28
3.1.7 自製夾具 29
3.1.8 光纖耦合器 30
3.2 曝光試片與試片翻模 30
3.2.1 曝光試片製作 30
3.2.2 光阻選擇 31
3.2.3 光阻塗佈與顯影流程 32
3.2.4 PDMS成分與翻模流程 33
3.3 系統架構 35
3.3.1 光強實驗流程 35
3.3.2 曝光實驗流程 39
第四章 光學頭製作與模擬 41
4.1 光學頭製作儀器介紹 41
4.1.1 拉針機 41
4.1.2 濺鍍機 44
4.1.3 聚焦離子束與電子束顯微系統 45
4.2 光學頭製作 45
4.2.1 石英微管光學頭製作 45
4.2.2 光纖毛細管光學頭製作 56
4.3 光學頭模擬 60
4.3.1 SAA到中空微管模擬 60
4.3.2 中空微管不同條件參數模擬 68
4.3.3 其他條件模擬 73
4.3.4 實際中空微管光學頭模擬 79
第五章 實驗結果分析與討論 84
5.1 石英微管光學頭光強實驗結果分析 84
5.1.1 石英微管光學頭初步光強結果討論 84
5.1.2 石英微管光學頭光強結果分析 90
5.1.3 石英微管光學頭光強結果與模擬比較 93
5.2 毛細管光纖光強實驗結果 95
5.2.1 毛細管光纖光強結果分析 95
5.2.2 毛細管光纖光學頭光強結果與模擬比較 96
5.2.3 石英微管光學頭與毛細管光學頭光強實驗比較 98
5.3 石英微管曝光實驗結果 99
5.3.1 曝光時間及光強選擇與中心有無阻塞差異 99
5.3.2 不同曝光距離、不同曝光時間、不同發數及不同曝光結果討論 101
5.4 毛細管光纖光學頭曝光結果 104
5.5 光阻孔洞深度分析討論 105
5.5.1 曝光結果討論與比較 116
第六章 結論與未來展望 117
6.1 結論 117
6.2 未來展望 118
REFERENCE 120
dc.language.isozh-TW
dc.title以中空微管製作次波長圓環孔徑結構於曝光微影系統之模擬與研究驗證zh_TW
dc.titleExperimental and Simulation Studies of Using Hollow Micro-tube to Make the Sub-wavelength Annular Aperture Structure for Optical Lithography Exposure Systemen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor林世明(Shi-Ming Lin)
dc.contributor.oralexamcommittee孫啟光(Chi-Kuang Sun),林啟萬(Chii-Wann Lin),李舒昇(Shu-Sheng Lee)
dc.subject.keyword貝索光束,中空微管,圓環結構,次波長聚焦,顯影技術,zh_TW
dc.subject.keywordBessel beam,Hollow tube,Micro-annular structure,Subwavelength focusing,Lithographic method,en
dc.relation.page123
dc.rights.note有償授權
dc.date.accepted2011-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
10.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved