Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29598
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂紹俊
dc.contributor.authorJhen-I Gaoen
dc.contributor.author高振壹zh_TW
dc.date.accessioned2021-06-13T01:11:42Z-
dc.date.available2012-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation藍雅馨(2005)轉錄因子Oct-2 參與脂多醣刺激RAW264.7細胞resistin基因表現之研究。臺灣大學醫學院生物化學暨分子生物研究所碩士論文
吳宗諭(2006)轉錄因子Oct-2參與在脂多醣誘發巨噬細胞中iNOS啟動子活化的研究。臺灣大學醫學院生物化學暨分子生物研究所碩士論文
Aderem, A., and Ulevitch, R.J. (2000). Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.
Ahmad, I., Hoessli, D.C., Walker-Nasir, E., Rafik, S.M., Shakoori, A.R., and Nasir ud, D. (2006). Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res. 34, 175-184.

Aloisi, F., Care, A., Borsellino, G., Gallo, P., Rosa, S., Bassani, A., Cabibbo, A., Testa, U., Levi, G., and Peschle, C. (1992). Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 149, 2358-2366.
Alter, B.P., and Rosenberg, P.S. (2007). Granulocyte colony-stimulating factor and severe aplastic anemia. Blood 109, 4589-4590.

Appelberg, R. (2007). Neutrophils and intracellular pathogens: beyond phagocytosis and killing. Trends Microbiol. 15, 87-92.
Asnaghi, L., Bruno, P., Priulla, M., and Nicolin, A. (2004). mTOR: a protein kinase switching between life and death. Pharmacol. Res. 50, 545-549.
Berven, L.A., and Crouch, M.F. (2000). Cellular function of p70S6K: a role in regulating cell motility. Immunol. Cell Biol. 78, 447-451.
Bohuslav, J., Chen, L.F., Kwon, H., Mu, Y., and Greene, W.C. (2004). p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J. Biol. Chem. 279, 26115-26125.
Bonilla, M.A., Gillio, A.P., Ruggeiro, M., Kernan, N.A., Brochstein, J.A., Abboud, M., Fumagalli, L., Vincent, M., Gabrilove, J.L., Welte, K., et al. (1989). Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N. Engl. J. Med. 320, 1574-1580.
Chen, L.F., and Greene, W.C. (2004). Shaping the nuclear action of NF-kappaB. Nature 5, 392-401.
Clerc, R.G., Corcoran, L.M., LeBowitz, J.H., Baltimore, D., and Sharp, P.A. (1988). The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains. Genes Dev. 2, 1570-1581.
Cockerill, P.N., and Klinken, S.P. (1990). Octamer-binding proteins in diverse hemopoietic cells. Mol. Cell. Biol. 10, 1293-1296.
Corcoran, L.M., Karvelas, M., Nossal, G.J., Ye, Z.S., Jacks, T., and Baltimore, D. (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Dev. 7, 570-582.
Corcoran, L.M., Koentgen, F., Dietrich, W., Veale, M., and Humbert, P.O. (2004). All known in vivo functions of the Oct-2 transcription factor require the C-terminal protein domain. J. Immunol. 172, 2962-2969.
Covic, M., Hassa, P.O., Saccani, S., Buerki, C., Meier, N.I., Lombardi, C., Imhof, R., Bedford, M.T., Natoli, G., and Hottiger, M.O. (2005). Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J. 24, 85-96.
Darveau, R.P. (1998). Lipid A diversity and the innate host response to bacterial infection. Curr. Opin. Microbiol. 1, 36-42.
Dauphinee, S.M., and Karsan, A. (2006). Lipopolysaccharide signaling in endothelial cells. Lab. Invest. 86, 9-22.
Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808.
Demetri, G.D., Zenzie, B.W., Rheinwald, J.G., and Griffin, J.D. (1989). Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood 74, 940-946.
Dong, B., and Zhao, F.Q. (2007). Expression of the Oct-2 transcription factor in mouse mammary gland and cloning and characterization of a novel Oct-2 isoform. Cell Tissue Res. 328, 595-606.
Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479.
Dunn, T.L., Ross, I.L., and Hume, D.A. (1996). Transcription factor Oct-2 is expressed in primary murine macrophages. Blood 88, 4072.
Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J. Biol. Chem. 264, 5700-5703.
Fang, J.Y., and Richardson, B.C. (2005). The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6, 322-327.
Fibbe, W.E., van Damme, J., Billiau, A., Goselink, H.M., Voogt, P.J., van Eeden, G., Ralph, P., Altrock, B.W., and Falkenburg, J.H. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony-stimulating factor. Blood 71, 430-435.
Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C., Pin, J.J., Garrone, P., Garcia, E., Saeland, S., et al. (1996). T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593-2603.
Franzke, A. (2006). The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev. 17, 235-244.
Fruman, D.A., Snapper, S.B., Yballe, C.M., Davidson, L., Yu, J.Y., Alt, F.W., and Cantley, L.C. (1999). Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science 283, 393-397.
Galanos, C., Roppel, J., Weckesser, J., Rietschel, E.T., and Mayer, H. (1977). Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae. Infect. Immun. 16, 407-412.
Glaspy, J.A., Baldwin, G.C., Robertson, P.A., Souza, L., Vincent, M., Ambersley, J., and Golde, D.W. (1988). Therapy for neutropenia in hairy cell leukemia with recombinant human granulocyte colony-stimulating factor. Ann. Intern. Med. 109, 789-795.
Goldsborough, A.S., Healy, L.E., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Willison, K.R., and Ashworth, A. (1993). Cloning, chromosomal localization and expression pattern of the POU domain gene Oct-11. Nucleic Acids Res. 21, 127-134.
Gordon, S. (1998). The role of the macrophage in immune regulation. Res. Immunol. 149, 685-688.
Gordon, S., and Taylor, P.R. (2005). Monocyte and macrophage heterogeneity. Nature 5, 953-964.
Guha, M., and Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cellular signalling 13, 85-94.
Hammond, W.P.t., Price, T.H., Souza, L.M., and Dale, D.C. (1989). Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N. Engl. J. Med. 320, 1306-1311.
Hannon, G.J. (2002). RNA interference. Nature 418, 244-251.
Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur. J. Immunol. 33, 2287-2296.
Hatzopoulos, A.K., Stoykova, A.S., Erselius, J.R., Goulding, M., Neuman, T., and Gruss, P. (1990). Structure and expression of the mouse Oct2a and Oct2b, two differentially spliced products of the same gene. Development 109, 349-362.
Herrmann, F., Cannistra, S.A., and Griffin, J.D. (1986). T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro. J. Immunol. 136, 2856-2861.
Jakubowski, A.A., Souza, L., Kelly, F., Fain, K., Budman, D., Clarkson, B., Bonilla, M.A., Moore, M.A., and Gabrilove, J. (1989). Effects of human granulocyte colony-stimulating factor in a patient with idiopathic neutropenia. N. Engl. J. Med. 320, 38-42.
Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy--from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754, 253-262.
Kang, S.M., Tsang, W., Doll, S., Scherle, P., Ko, H.S., Tran, A.C., Lenardo, M.J., and Staudt, L.M. (1992). Induction of the POU domain transcription factor Oct-2 during T-cell activation by cognate antigen. Mol. Cell. Biol. 12, 3149-3154.
Kared, H., Masson, A., Adle-Biassette, H., Bach, J.F., Chatenoud, L., and Zavala, F. (2005). Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4(+)CD25(+) regulatory T-cells. Diabetes 54, 78-84.
Katakowski, M., Zhang, Z.G., Chen, J., Zhang, R., Wang, Y., Jiang, H., Zhang, L., Robin, A., Li, Y., and Chopp, M. (2003). Phosphoinositide 3-kinase promotes adult subventricular neuroblast migration after stroke. J. Neurosci. Res. 74, 494-501.
Kaushansky, K. (2006). Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354, 2034-2045.
Kemler, I., and Schaffner, W. (1990). Octamer transcription factors and the cell type-specificty of immunoglobulin gene-expression. Faseb J. 4, 1444-1449.
Kitabayashi, A., Hirokawa, M., Hatano, Y., Lee, M., Kuroki, J., Niitsu, H., and Miura, A.B. (1995). Granulocyte colony-stimulating factor downregulates allogeneic immune responses by posttranscriptional inhibition of tumor necrosis factor-alpha production. Blood 86, 2220-2227.
Koeffler, H.P., Gasson, J., Ranyard, J., Souza, L., Shepard, M., and Munker, R. (1987). Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood 70, 55-59.
Koyasu, S. (2003). The role of PI3K in immune cells. Nat. Immunol. 4, 313-319.
Latchman, D.S. (1996). The Oct-2 transcription factor. Int. J. Biochem. Cell Biol. 28, 1081-1083.
Latchman, D.S. (1999). POU family transcription factors in the nervous system. J. Cell. Physiol. 179, 126-133.
LeBowitz, J.H., Kobayashi, T., Staudt, L., Baltimore, D., and Sharp, P.A. (1988). Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro. Genes Dev. 2, 1227-1237.
Lillycrop, K.A., and Latchman, D.S. (1992). Alternative splicing of the Oct-2 transcription factor RNA is differentially regulated in neuronal cells and B cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J. Biol. Chem. 267, 24960-24965.
Liu, Y.-J. (2001). Dendritic Cell Subsets and Lineages, and Their Functions in Innate and Adaptive Immunity. Cell 106, 259-262.
Liu, Y., Denlinger, C.E., Rundall, B.K., Smith, P.W., and Jones, D.R. (2006). Suberoylanilide hydroxamic acid induces Akt-mediated phosphorylation of p300, which promotes acetylation and transcriptional activation of RelA/p65. J. Biol. Chem. 281, 31359-31368.
Liu, Y.Z., Lillycrop, K.A., and Latchman, D.S. (1995). Regulated splicing of the Oct-2 transcription factor RNA in neuronal cells. Neurosci. Lett. 183, 8-12.
Lu, S.C., Chang, S.F., Chen, H.L., Chou, Y.Y., Lan, Y.H., Chuang, C.Y., Yu, W.H., and Chen, C.L. (2007). A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem. J. 402, 387-395.
Malipiero, U.V., Frei, K., and Fontana, A. (1990). Production of hemopoietic colony-stimulating factors by astrocytes. J. Immunol. 144, 3816-3821.
Matthews, J.R., and Hay, R.T. (1995). Regulation of the DNA binding activity of NF-kappa B. Int. J. Biochem. Cell Biol. 27, 865-879.
Meijer, D., Graus, A., Kraay, R., Langeveld, A., Mulder, M.P., and Grosveld, G. (1990). The octamer binding factor Oct6: cDNA cloning and expression in early embryonic cells. Nucleic Acids Res. 18, 7357-7365.
Morris, E.S., MacDonald, K.P., Rowe, V., Johnson, D.H., Banovic, T., Clouston, A.D., and Hill, G.R. (2004). Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 103, 3573-3581.
Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature 6, 173-182.
Negrin, R.S., Haeuber, D.H., Nagler, A., Kobayashi, Y., Sklar, J., Donlon, T., Vincent, M., and Greenberg, P.L. (1990). Maintenance treatment of patients with myelodysplastic syndromes using recombinant human granulocyte colony-stimulating factor. Blood 76, 36-43.
Negrin, R.S., Haeuber, D.H., Nagler, A., Olds, L.C., Donlon, T., Souza, L.M., and Greenberg, P.L. (1989). Treatment of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor. A phase I-II trial. Ann. Intern. Med. 110, 976-984.
Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol. Cell. Biol. 10, 2002-2011.
Nishizawa, M., Tsuchiya, M., Watanabe-Fukunaga, R., and Nagata, S. (1990). Multiple elements in the promoter of granulocyte colony-stimulating factor gene regulate its constitutive expression in human carcinoma cells. J. Biol. Chem. 265, 5897-5902.
Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., and Hallman, M. (2003). Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur. J. Immunol. 33, 597-605.
Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Granulocyte-macrophage colony-stimulating factor (CSF) and multilineage CSF recruit human monocytes to express granulocyte CSF. Blood 73, 64-67.
Ozer, H., Armitage, J.O., Bennett, C.L., Crawford, J., Demetri, G.D., Pizzo, P.A., Schiffer, C.A., Smith, T.J., Somlo, G., Wade, J.C., et al. (2000). 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines. American Society of Clinical Oncology Growth Factors Expert Panel. J. Clin. Oncol. 18, 3558-3585.
Palucka, A.K., Banchereau, J., Blanco, P., and Pascual, V. (2002). The interplay of dendritic cell subsets in systemic lupus erythematosus. Immunology and cell biology 80, 484-488.
Park, H.K., Chu, K., Lee, S.T., Jung, K.H., Kim, E.H., Lee, K.B., Song, Y.M., Jeong, S.W., Kim, M., and Roh, J.K. (2005). Granulocyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res. 1041, 125-131.
Pevzner, V., Kraft, R., Kostka, S., and Lipp, M. (2000). Phosphorylation of Oct-2 at sites located in the POU domain induces differential down-regulation of Oct-2 DNA-binding ability. Biochem. J. 347 Pt 1, 29-35.
Phillips, K., and Luisi, B. (2000). The virtuoso of versatility: POU proteins that flex to fit. J. Mol. Biol. 302, 1023-1039.
Proud, C.G. (1996). p70 S6 kinase: an enigma with variations. Trends Biochem. Sci. 21, 181-185.
Rader, D.J., and Pure, E. (2005). Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 1, 223-230.
Raetz, C.R., Ulevitch, R.J., Wright, S.D., Sibley, C.H., Ding, A., and Nathan, C.F. (1991). Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. Faseb J. 5, 2652-2660.
Roberts, A.W. (2005). G-CSF: a key regulator of neutrophil production, but that's not all! Growth factors 23, 33-41.
Rosner, M.H., Vigano, M.A., Ozato, K., Timmons, P.M., Poirier, F., Rigby, P.W., and Staudt, L.M. (1990). A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686-692.
Rutella, S., Zavala, F., Danese, S., Kared, H., and Leone, G. (2005). Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J. Immunol. 175, 7085-7091.
Schmitz, M.L., Mattioli, I., Buss, H., and Kracht, M. (2004). NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem 5, 1348-1358.
Segal, A.W. (2005). How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197-223.
Shyu, W.C., Lin, S.Z., Yang, H.I., Tzeng, Y.S., Pang, C.Y., Yen, P.S., and Li, H. (2004). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110, 1847-1854.
Solaroglu, I., Cahill, J., Jadhav, V., and Zhang, J.H. (2006). A novel neuroprotectant granulocyte-colony stimulating factor. Stroke 37, 1123-1128.
Sturm, R.A., Das, G., and Herr, W. (1988). The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 2, 1582-1599.
Sugimoto, Y., Fukada, Y., Mori, D., Tanaka, S., Yamane, H., Okuno, Y., Deai, K., Tsuchiya, S., Tsujimoto, G., and Ichikawa, A. (2005). Prostaglandin E2 stimulates granulocyte colony-stimulating factor production via the prostanoid EP2 receptor in mouse peritoneal neutrophils. J. Immunol. 175, 2606-2612.
Tanaka, M., and Herr, W. (1990). Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60, 375-386.
Tsuchiya, M., Kaziro, Y., and Nagata, S. (1987). The chromosomal gene structure for murine granulocyte colony-stimulating factor. Eur. J. Biochem. 165, 7-12.
van de Geijn, G.J., Aarts, L.H., Erkeland, S.J., Prasher, J.M., and Touw, I.P. (2003). Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev. Physiol. Biochem. Pharmacol. 149, 53-71.
van Os, R., van Schie, M.L., Willemze, R., and Fibbe, W.E. (2002). Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells. J. Hematother. Stem Cell Res. 11, 513-521.
Vellenga, E., Rambaldi, A., Ernst, T.J., Ostapovicz, D., and Griffin, J.D. (1988). Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood 71, 1529-1532.
Wang, V.E., Tantin, D., Chen, J., and Sharp, P.A. (2004). B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 101, 2005-2010.
Wieser, M., Bonifer, R., Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Interleukin-4 induces secretion of CSF for granulocytes and CSF for macrophages by peripheral blood monocytes. Blood 73, 1105-1108.
Wirth, T., Priess, A., Annweiler, A., Zwilling, S., and Oeler, B. (1991). Multiple Oct2 isoforms are generated by alternative splicing. Nucleic Acids Res. 19, 43-51.
Xu, S., Bayat, H., Hou, X., and Jiang, B. (2006). Ribosomal S6 kinase-1 modulates interleukin-1beta-induced persistent activation of NF-kappaB through phosphorylation of IkappaBbeta. Am. J. Physiol. 291, C1336-1345.
Zavala, F., Abad, S., Ezine, S., Taupin, V., Masson, A., and Bach, J.F. (2002). G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol. 168, 2011-2019.
Zsebo, K.M., Yuschenkoff, V.N., Schiffer, S., Chang, D., McCall, E., Dinarello, C.A., Brown, M.A., Altrock, B., and Bagby, G.C., Jr. (1988). Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71, 99-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29598-
dc.description.abstractOct-2是因為能結合到許多基因上的octamer motif(ATTTGCAT)而命名的,Oct-2是屬於POU family的一員,POU family的成員除了Oct-2之外,還有Oct-1、Pit-1以及Unc-86,在之前的研究指出,Oct-2在神經細胞內以及B淋巴球中是非常重要的轉錄因子,然而Oct-2在巨噬細胞內的表現和功能卻還尚未明瞭,在我們之前的研究指出,脂多醣LPS會誘導巨噬細胞表現Oct-2,並且進一步的發現在LPS作用下,巨噬細胞表現Oct-2是藉由PI3K/AKT/mTOR pathway來調節其蛋白質的合成,因此在巨噬細胞中,Oct-2或許是個調節細胞內發炎基因表現的重要轉錄因子。
Granulocyte colony stimulating factor (G-CSF)是一個血球生長因子,它能維持嗜中性球先驅細胞的生長並幫助其分化成嗜中性球,在體內一些發炎性刺激,像是IL-1, LPS, and TNF-α可以誘導巨噬細胞、內皮細胞和纖維母細胞表現G-CSF,雖然已知道G-CSF會受到刺激而表現,但是對於調控G-CSF表現的分子機制卻還不清楚。在本篇論文中,我們探討了在LPS作用下,巨噬細胞表現G-CSF是否會經由PI3K/AKT/mTOR pathway來調節,並且探討了Oct-2在LPS誘導G-CSF表現的過程中所扮演的角色,我們將RAW264.7細胞先給予不同濃度的PI3K、AKT或是mTOR的抑制劑來阻斷PI3K/AKT/mTOR pathway,以RT-PCR來偵測LPS誘導六小時後G-CSF mRNA的表現,在培養液中的G-CSF蛋白是利用ELISA assay偵測,結果發現,隨著抑制劑的濃度的增加,LPS所誘導的G-CSF mRNA和蛋白質表現會逐漸降低,並且這些抑制劑也能降低LPS誘導Oct-2表現。除此之外,NF-κB transactivation activity和 DNA binding affinity都會受到這些抑制劑而降低。
在chromatin immunoprecipitation (ChIP) assay中顯示在LPS作用下,Oct-2會結合到G-CSF啟動子上,而另一個octamer binding protein-Oct-1則是不會結合到啟動子上;在PI3K、AKT或是mTOR的抑制劑加入之後,便會使得Oct-2減少結合到G-CSF啟動子上。進一步地,我們將細胞轉染表現shRNA的質體,利用RNA interference的方式來knockdown Oct-2的表現,結果顯示,由LPS誘導的G-CSF的表現會因為Oct-2被knockdown之後而明顯的減少,因此由實驗結果得知,在LPS作用下,巨噬細胞表現G-CSF是需要活化PI3K/AKT/mTOR pathway,並且除了NF-κB之外,Oct-2調節LPS所誘導的G-CSF基因轉錄中是相當重要的轉錄因子。
zh_TW
dc.description.abstractThe Oct-2 factor was originally identified on the basis of its ability to bind to the octamer motif ATGCAAAT which is found in the promoters of several genes. Oct-2 belongs to the POU family composed of Oct-1, Oct-2, Pit-1, and Unc-86. In the previous studies, Oct-2 has been known as an important transcription factor for B cells and neuron cells. However, expression and function of Oct-2 in the macrophages is mostly unknown. Our recent results showed that expression of Oct-2 in the macrophages was induced by LPS. Moreover, our data suggest that LPS-induced increase of Oct-2 protein is through PI3K/AKT/mTOR signaling pathway. Therefore, Oct-2 may act as a mediator in response to inflammatory stimuli.
Granulocyte colony stimulating factor (G-CSF) is a hematopoietic growth factor. It supports the survival and stimulates the proliferation of neutrophil progenitors and promotes their differentiation into mature neutrophils. Inflammatory stimuli such as IL-1, LPS, and TNF-α can induce G-CSF production in macrophages, endothelial cells, and fibroblast, but the molecular mechanism was not clear. In our studies, we tested if LPS induces G-CSF expression through PI3K/AKT/mTOR pathway, and if Oct-2 plays a role in LPS-induced G-CSF expression. RAW264.7 macrophages were pretreated with inhibitors of PI3K, AKT, or mTOR before LPS was added for 6 hours and then G-CSF mRNA was determined by RT-PCR and protein in medium was determined by ELISA assay, and its RNA was determined by RT-PCR. The results showed that different concentration of PI3K, AKT, and mTOR inhibitors gradually prevented LPS-induced increase of G-CSF and inhibitors also downregulated LPS-induced Oct-2 expression. Additionally, NF-κB transactivation activity and DNA binding affinity was reduced by these inhibitors. Chromatin immunoprecipitation (ChIP) assay showed that in LPS-treated cells, Oct-2, but not Oct-1 was recruited to the octamer motif of the G-CSF promoter. Furthermore, pretreated with inhibitors of PI3K, AKT, or mTOR before LPS was added resulted in less Oct-2 binding to the promoter of G-CSF. When shRNA was transfected into cells to knockdown Oct-2, LPS-induced G-CSF expression was significantly reduced. Taken together, our data suggest that LPS-induced G-CSF expression depends on the activation of PI3K/AKT/mTOR pathway and besides NF-κB, Oct-2 plays an important role in the transcription regulation of G-CSF expression induced by LPS.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:11:42Z (GMT). No. of bitstreams: 1
ntu-96-R94442016-1.pdf: 1730383 bytes, checksum: 71e558ef08eb56233b7e43697fec84e8 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents論文口試委員審定書…………………………………………………… i誌謝………………………………………………………………………ii
中文摘要…………………………………………………………………iv
英文摘要…………………………………………………………………vi
縮寫對照表……………………………………………………………viii
第一章 緒論
第一節 文獻回顧………………………………………………… 2
第二節 研究動機與實驗目的……………………………………14
第二章 材料與方法
第一節 實驗材料…………………………………………………17
第二節 細胞培養…………………………………………………19
第三節 實驗方法…………………………………………………19
第四節 小鼠之G-CSF promoter活性的分析……………………25
第五節 以西方墨點法(Western Blot)分析細胞內蛋白質表
現…………………………………………………………26
第六節 分析分泌性蛋白質G-CSF的表現……………………… 29
第七節 in vivo觀察細胞內DNA和轉錄因子的結合……………30
第八節 mRNA表現分析……………………………………………33
第九節 免疫螢光分析法(immunofluorescence)……………35
Table 1 Sequences of primers……………………………… 36
第三章 結果
第一節 LPS誘導巨噬細胞大量表現G-CSF………………………39
第二節 抑制劑LY294006、AKT inhibitor和rapamycin以及暫時
性轉染具活性的AKT和mTOR對於LPS誘導G-CSF表現的影
響…………………………………………………………39
第三節 在巨噬細胞中,LY294006、AKT inhibitor和rapamycin
對於NF-κB tranlocation、transactivation和DNA
binding affinity的影響………………………………40
第四節 Chromatin immunoprecipitation(ChIP)assay顯示
LPS會誘導Oct-2結合到G-CSF啟動子上、而Oct-1不
會…………………………………………………………41
第五節 抑制劑LY294006、AKT inhibitor和rapamycin對於LPS
誘導巨噬細胞表現Oct-2的影響,進而抑制了結合到G-
CSF啟動子上的Oct-2……………………………………42
第六節 pGL3-G-CSF-P與pCG-Oct-1或是pCG-Oct-2共同轉染時對
於LPS 活化G-CSF啟動子的影響……………………… 43
第七節 利用RNAi knockdown的方式來抑制Oct-1以及Oct-2表現
後對LPS誘導G-CSF表現的影響…………………………43
第四章 討論
第一節 LPS誘導G-CSF的表現……………………………………46
第二節 LPS藉由PI3K/AKT/mTOR pathway來調控Oct-2表現和NF-
κB transactivation與DNA binding affinity…… 46
第三節 Oct-2調節LPS誘導巨噬細胞表現G-CSF,而非Oct-1 48
第四節 NF-κB和Oct-2共同調控G-CSF的表現…………………50
第五節 總結…………………………………………………… 51
第五章 圖表……………………………………………………………53
參考文獻…………………………………………………………………72
附錄………………………………………………………………………82
表目錄
Figure 1 Time course of LPS-stimulated G-CSF release in
RAW264.7 cells…………………………………………… 54
Figure 2 Expression of G-CSF in RAW264.7 cells………………55
Figure 3 The influence of blockade of PI3K/AKT/mTOR pathway
on Oct-1 and Oct-2 in RAW264.7 cells……………… 56
Figure 4 LPS-induced increase of G-CSF mRNA is inhibited by
a PI3-Kinase inhibitor, LY294002, in a dose
dependent manner in RAW264.7 cells………………… 57
Figure 5 LY294002 downregulated the levels of G-CSF protein
induced by LPS…………………………………………… 58
Figure 6 AKT inhibitor blocks the LPS-induced G-CSF
expression in RAW264.7 cells………………………… 59
Figure 7 AKT inhibitor prevents the increase of LPS-induced
G-CSF protein production……………………………… 60
Figure 8 LPS-induced G-CSF production is partially
inhibited by rapamycin in RAW264.7 cells………… 61
Figure 9 Rapamycin downregulated LPS-induced G-CSF protein
expression………………………………………………… 62
Figure 10 Blockade activation of AKT or mTOR reduced G-CSF
production induced by LPS treatment…………………63
Figure 11 The effects of inhibitors of PI 3-kinase, AKT,
and mTOR on the levels of nuclear NF-κB in
Raw264.7 cells…………………………………………… 64
Figure 12 The regulation of LPS-induced NF- κB
transcriptional activity through PI3K/AKT/mTOR
pathway…………………………………………………… 65
Figure 13 Binding of NF-κB to the promoter of G-CSF is
regulated through PI3K/AKT/mTOR pathway in
RAW264.7 cells……………………………………………66
Figure 14 Oct-2 binds to the promoter of G-CSF in RAW264.7
cells is stimulated by LPS……………………………67
Figure 15 Binding of Oct-2 to the promoter of G-CSF in LPS-
treated cells is mediated through PI3K/AKT/mTOR
pathway…………………………………………………… 68
Figure 16 The sequence of selected G-CSF promoter region…69
Figure 17 Effects of Oct-1 or Oct-2 expression plasmid on
the activation of G-CSF promoter with or
without LPS treatment………………………………… 70
Figure 18 Knockdown of Oct-2 reduced LPS-induced G-CSF
expression in RAW264.7 cells…………………………71
dc.language.isozh-TW
dc.subject嗜中性球zh_TW
dc.subject脂多醣zh_TW
dc.subject巨噬細胞zh_TW
dc.subject顆粒性白血球群落刺激因子zh_TW
dc.subjectmacrophageen
dc.subjectG-CSFen
dc.subjectneutrophilen
dc.subjectOct-2en
dc.subjectNF-κBen
dc.subjectLPS RAW264.7en
dc.titlePI3K/AKT/mTOR訊息傳遞路徑在脂多醣誘導巨噬細胞表現G-CSF中所扮演的角色zh_TW
dc.titleThe role of PI3K/AKT/mTOR signaling pathway in LPS-induced increase of granulocyte colony stimulating factor (G-CSF) in macrophagesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑芬,姜安娜,游偉詢
dc.subject.keyword脂多醣,巨噬細胞,顆粒性白血球群落刺激因子,嗜中性球,zh_TW
dc.subject.keywordLPS RAW264.7,macrophage,NF-κB,Oct-2,neutrophil,G-CSF,en
dc.relation.page91
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
Appears in Collections:生物化學暨分子生物學科研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
1.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved