請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29590
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
dc.contributor.author | Biing-Teo Wong | en |
dc.contributor.author | 黃炳友 | zh_TW |
dc.date.accessioned | 2021-06-13T01:11:23Z | - |
dc.date.available | 2007-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-18 | |
dc.identifier.citation | Aguilar, A.; Casas, C.; Lema, J. M., Degradation of Volatile Fatty-Acids by Differently Enriched Methanogenic Cultures - Kinetics and Inhibition. Water Research 1995, 29, (2), 505-509.
Ahring, B. K.; Westermann, P., Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture. Applied and Environmental Microbiology 1987, 53, (2), 434-439. Ahring, B. K.; Westermann, P., Product Inhibition of Butyrate Metabolism by Acetate and Hydrogen in a Thermophilic Coculture. Applied and Environmental Microbiology 1988, 54, (10), 2393-2397. Boone, D. R.; Bryant, M. P., Propionate-Degrading Bacterium, Syntrophobacter-Wolinii Sp-Nov Gen-Nov from Methanogenic Ecosystems. Applied and Environmental Microbiology 1980, 40, (3), 626-632. Boone, D. R.; Xun, L. Y., Effects of pH, Temperature, and Nutrients on Propionate Degradation by a Methanogenic Enrichment Culture. Applied and Environmental Microbiology 1987, 53, (7), 1589-1592. Cho, Y. T.; Young, J. C.; Jordan, J. A.; Moon, H. M., Factors Affecting Measurement of Specific Methanogenic Activity. Water Science and Technology 2005, 52, (1-2), 435-440. Corbitt, Robert A., Handbook of Environmental Engineering, 2nd edition, McGraw-Hill Handbooks, New York, 1999. Dolfing, J., Kinetics of Methane Formation by Granular Sludge at Low Substrate Concentrations - the Influence of Mass-Transfer Limitation. Applied Microbiology and Biotechnology 1985, 22, (1), 77-81. Fukuzaki, S.; Nishio, N.; Shobayashi, M.; Nagai, S., Inhibition of the Fermentation of Propionate to Methane by Hydrogen, Acetate, and Propionate. Applied and Environmental Microbiology 1990, 56, (3), 719-723. Gavrillescu M. Engineering Concerns and New Developments in Anaerobic Wastewater Treatment. Clean Technologies and Environmental Policy 2002, 346-362. Gujer, W.; Zehnder, A. J. B., Conversion Processes in Anaerobic-Digestion. Water Science and Technology 1983, 15, (8-9), 127-167. Harper, S. R.; Pohland, F. G., Recent Developments in Hydrogen Management during Anaerobic Biological Waste-Water Treatment. Biotechnology and Bioengineering 1986, 28, (4), 585-602. Iannotti, E. L.; Fischer, J. R., Effects of Ammonia, Volatile Acids, pH, and Sodium on Growth of Bacteria Isolated from a Swine Manure Digester. Developments in Industrial Microbiology 1984, 25, 741-747. Kosaric, N. & Blaszczyk, R. Microbial Aggregates in Anaerobic Wastewater. Treatment. Advances in Biochemical Engineering/Biotechnology 42, 27-62, 1990. Lettinga, G. Proceedings of the 4th European Sewage and Refuge Symposium, Munich, Germany, 1978. Mackie, R. I.; Bryant, M. P., Metabolic-Activity of Fatty Acid-Oxidizing Bacteria and the Contribution of Acetate, Propionate, Butyrate, and CO2 to Methanogenesis in Cattle Waste at 40°C and 60°C. Applied and Environmental Microbiology 1981, 41, (6), 1363-1373. Marchaim, U.; Krause, C., Propionic to Acetic-Acid Ratios in Overloaded Anaerobic-Digestion. Bioresource Technology 1993, 43, (3), 195-203. McCarty, P. L.; Smith, D. P., Anaerobic Waste-Water Treatment 4. Environmental Science & Technology 1986, 20, (12), 1200-1206. McInerney, M. J., and M. P. Bryant. Syntrophic Associations of H2-utilizing Methanogenic Bacteria and H2-producing Alcohol and Fatty Acid-degrading Bacteria in Anaerobic Degradation of Organic Matter 1980, p. 117-126. In G. Gottschalk (ed.), Anaerobes and anaerobic infections. Gustav Fisher Verlag, Stuttgart. Mosche, M.; Jordening, H. J., Detection of Very Low Saturation Constants in Anaerobic Digestion: Influences of Calcium Carbonate Precipitation and pH. Applied Microbiology and Biotechnology 1998, 49, (6), 793-799. Mountfort, D. O.; Asher, R. A., Changes in Proportions of Acetate and Carbon-Dioxide Used as Methane Precursors during Anaerobic Digestion of Bovine Waste. Applied and Environmental Microbiology 1978, 35, (4), 648-654. Mucha, H.; Lingens, F.; Trosch, W., Conversion of Propionate to Acetate and Methane by Syntrophic Consortia. Applied Microbiology and Biotechnology 1988, 27, (5-6), 581-586. Nanba, A.; Nukada, R.; Nagai, S., Inhibition by Acetic and Propionic Acids of the Growth of Propionibacterium-Shermanii. Journal of Fermentation Technology 1983, 61, (6), 551-556. Palmisano AC, Barlaz MA. Microbiology of Solid Waste. In: Vreeland RH, editor. The Microbiology of Extreme and Unusual Environments. London: CRC Press; 1971. p. 72–104. Praveen, V.V. and Ramachandran, K.B. Proceedings of the Ninth National Convention of Institution of Engineers, C. Ayyanna (Ed.), Vishakhapatnam, India, 1993. Rincon, B.; Raposo, F.; Borja, R.; Gonzalez, J. M.; Portillo, M. C.; Saiz-Jimenez, C., Performance and Microbial Communities of a Continuous Stirred Tank Anaerobic Reactor Treating Two-phases Olive Mill Solid Wastes at Low Organic Loading Rates. Journal of Biotechnology 2006, 121, (4), 534-543. Strydom, J. P.; Mostert, J. F.; Britz, T. J., Anaerobic Treatment of a Synthetic Dairy Effluent Using a Hybrid Digester. Water Sa 1995, 21, (2), 125-130. Tang, S.Y. and D.Y. Wang. Wastewater Treatment. Chemical Industry Press, Beijing, 1998. Thauer, R. K.; Jungermann, K.; Decker, K., Energy-Conservation in Chemotropic Anaerobic Bacteria. Bacteriological Reviews 1977, 41, (1), 100-180. Toerien, D. F.; Hattingh, W. H., Anaerobic Digestion .I. Microbiology of Anaerobic Digestion. Water Research 1969, 3, (6), 385-&. Valcke, D.; Verstraete, W., A Practical Method to Estimate the Acetoclastic Methanogenic Biomass in Anaerobic Sludges. Journal of Water Pollution Control Federation 1983, 55, (9), 1191-1195. Vanlier, J. B.; Grolle, K. C. F.; Frijters, C. T. M. J.; Stams, A. J. M.; Lettinga, G., Effects of Acetate, Propionate, and Butyrate on the Thermophilic Anaerobic Degradation of Propionate by Methanogenic Sludge and Defined Cultures. Applied and Environmental Microbiology 1993, 59, (4), 1003-1011. Wu, M. M.; Criddle, C. S.; Hickey, R. F., Mass-Transfer and Temperature Effects on Substrate Utilization in Brewery Granules. Biotechnology and Bioengineering 1995, 46, (5), 465-475. Zinder, S.H. Physiological Ecology of Methanogens. In Methanogenesis: Ecology, Physiology, Biochemistry and Genetics; Ferry, G., Ed., Chapman & Hall: New York, 1993. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29590 | - |
dc.description.abstract | 揮發性脂肪酸在有機物生物轉化成甲烷和二氧化碳的過程中扮演著重要的角色。本論文探討揮發性脂肪酸的組成和進水有機容積負荷 (organic loading rate) 對上流式厭氣污泥床(upflow Anaerobic Sludge Blanket, UASB)反應器表現之影響。
在第一部份實驗中,UASB反應器以相似成分的乙酸,丙酸和丁酸進料。化學需氧量(COD)濃度為20 g COD L-1,操作有機容積負荷介於0.82 和10.4 g COD L-1 day-1。實驗發現揮發性脂肪酸的COD移除率隨有機容積負荷的增加而下降,由99%下降至83%。甲烷產率(methane yield)理論值百分比由38.6%上升到86.5%。這顯示了提高有機容積負荷能更有效的使揮發性脂肪酸轉化成甲烷。 在第二部份實驗中,進料組成分別改成具有相同COD濃度之純乙酸,純丙酸和純丁酸。實驗發現以純乙酸和純丁酸進料的UASB反應器相較於純丙酸有較高的沼氣產量(9940 and 9730 mL day-1),甲烷組成(90%及77.5%)和COD移除率(78.6%及97%)。而COD濃度為20 g COD L-1的純丙酸對生物反應器呈現非常嚴重的抑制效果,甚至造成反應器失效。碳平衡指出在相同的COD濃度下,純乙酸較純丁酸有更多的碳進入反應器,而在丁酸進料的反應器中有10.5%的碳形成微生物質量(biomass),這使得最終以丁酸進料的污泥揮發性懸浮固體(volatile suspension solid)濃度較乙酸進料的污泥有13.1%的增加。而乙酸進料的反應器所產生的高純度甲烷源於高pH值的出水對沼氣中二氧化碳的吸收。 產甲烷活性測試證實了以乙酸進料的污泥缺乏產乙酸菌來降解丁酸。乙酸和丁酸的降解能有效的幫助降解丙酸。反應器的甲烷產量可以藉由提高有機容積負荷增加2.4到4.2倍。而除了以混合揮發性脂肪酸進料的反應器外,其他反應器的COD移除率都能通過產甲烷活性測試來預測。 | zh_TW |
dc.description.abstract | Volatile fatty acid (VFA) is the most important intermediate product in the bioconversion of organic matter to CH4 and CO2. This study investigated the effect of VFA on the UASB digester performance based on the organic loading rates (OLRs) and the VFA composition.
UASB digesters fed by similar VFA of 20 g COD L-1 were operated at OLR between 0.82 and 10.4 g COD L-1 day-1. The chemical oxygen demand (COD) removal efficiencies were between 83% and 99%, and methane yield increased from 38.6% to 86.5% of the theoretical value. The results showed an elevated effectiveness in converting mixed-VFA substrate to methane at the increased OLRs. By feeding pure acetate, propionate or butyrate substrate in the same COD to the UASB digesters, the acetate- and butyrate-fed digesters showed higher biogas production (9940 and 9730 mL day-1), methane composition (90% and 77.5%) and COD removal (78.6% and 97%) than pure propionate-fed reactor. Propionate substrate exhibited severe inhibition leading to system failure at a feed concentration of 20 g COD L-1. Carbon balance showed higher amount of carbon in acetate substrate fed to digester than butyrate substrate. 10.5% of carbon fed to butyrate-fed digester was converted to biomass and made an 13.1% increase of VSS concentration in butyrate-fed sludge compared with acetate-fed sludge. High purity of methane in acetate-fed digester was due to dissolution of carbon dioxide in high pH effluent. Specific methanogenic activity test proved that the acetate-fed sludge was lacking of acetogen to degrade butyrate. Degradation of propionate is feasible while combined with the degradation of acetate and butyrate. Methane production of the digesters can be further increased from 2.4 to 4.2 times. The COD removal of digesters can be predicted well by SMA test except for the mixed acid-fed digester. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:11:23Z (GMT). No. of bitstreams: 1 ntu-96-R94524037-1.pdf: 752477 bytes, checksum: afceabcfcbd90b30a2b9b7afe96348af (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENTS.........................................Ⅰ
ABSTRACT (CHINESE).......................................Ⅱ ABSTRACT.................................................Ⅲ CONTENTS.................................................Ⅳ LIST OF FIGURES..........................................Ⅶ LIST OF TABLES...........................................Ⅹ LIST OF ABBREVIATIONS....................................XI CHAPTER 1 INTRODUCTION....................................1 1.1 BACKGROUND........................................1 1.2 OBJECTIVES OF WORK................................3 CHAPTER 2 LITERATURE REVIEW...............................4 2.1 ANAEROBIC DIGESTION...............................4 2.1.1 Introduction...............................4 2.1.2 Biochemistry and Microbiology..............5 2.1.2.1 Hydrolysis of complex organic matter....................................................7 2.1.2.2 Acidogenesis.......................7 2.1.2.3 Acetogenesis.......................7 2.1.2.4 Methanogenesis.....................8 2.1.3 Gibbs Free Energy Change of VFA Degradation9 2.2 UASB (UPFLOW ANAEROBIC SLUDGE BLANKET) REACTORS..11 2.2.1 Operating Parameters in Anaerobic Digestion Process..................................................12 2.2.1.1 Temperature.......................12 2.2.1.2 pH................................13 2.2.1.3 Organic Loading Rate (OLR) and Hydraulic Retention Time (HRT)...........................13 2.2.1.4 C/N Ratio.........................14 2.2.1.5 Toxicity..........................14 2.2.1.6 Mixing............................14 2.3 CALCULATION OF REACTOR PERFORMANCE...............15 2.3.1 General Anaerobic Reaction for Organics...........15 2.3.2 Calculation of Organic Compound COD...............15 2.3.3 Calculation of Biogas Production..................16 2.3.4 Carbon Balance in UASB Digester...................18 CHAPTER 3 METHODS AND MATERIALS..........................20 3.1 UPFLOW ANAEROBIC SLUDGE BLANKET (UASB) SYSTEM.....20 3.1.1 Experimental Set-up.......................20 3.1.2 Feed Composition..........................21 3.1.3 Inoculum..................................21 3.2 ANALYTICAL METHODS................................23 3.2.1 Chemical Oxygen Demand (COD)..............23 3.2.2 pH........................................23 3.2.3 Biogas Production and Gas Composition.....23 3.2.4 Volatile Fatty Acid (VFA).................24 3.2.5 Total Organic Carbon......................24 3.2.6 Volatile Suspension Solid (VSS) and Total Suspension Solid (TSS)...................................24 3.3 EXPERIMENTAL DESIGN...............................24 3.4 SPECIFIC METHANOGENIC ACTIVITY (SMA) TEST.........25 CHAPTER 4 RESULTS AND DISCUSSIONS........................28 4.1 INTRODUCTION......................................28 4.2 UASB PERFORMANCE DURING START-UP UNDER DIFFERENT ORGANIC LOADING RATES (OLRS).............................28 4.2.1 Result of Biogas Production at Different OLRs.....................................................29 4.2.2 Result of COD Removal at Different OLRs...33 4.2.3 Discussion on OLR and Digester Performance34 4.2.4 Discussion on OLR and Methane Yield.......35 4.3 EFFECT OF VFA COMPOSITION ON PERFORMANCE OF UASB DIGESTERS................................................38 4.3.1 Introduction...............................38 4.3.2 Result of UASB Digester Fed by Mixed Acid (Control)................................................38 4.3.3 Result of UASB Digester Fed by Pure Acetate..................................................42 4.3.4 Result of UASB Digester Fed by Pure Butyrate.................................................45 4.3.5 Result of UASB Digester Fed by Pure Propionate...............................................48 4.3.6 Effect of VFA Composition on UASB Performance..............................................51 4.3.7 Discussion on Effect of VFA Composition on UASB Performance.........................................54 4.4 CARBON BALANCE OF ACETATE AND BUTYRATE-FED DIGESTERS................................................56 4.5 METHANE YIELD OF ACETATE AND BUTYRATE-FED DIGESTERS................................................64 CHAPTER 5 EVALUATION OF UASB PERFORMANCE BY SPECIFIC METHANOGENIC ACTIVITY TEST...............................66 5.1 INTRODUCTION......................................66 5.2 SMA TEST USING ACETATE, BUTYRATE AND MIXED ACID-FED SLUDGE...................................................67 5.2.1 Determination of Optimal (F/M) Ratio.......67 5.2.2 SMA Test Using Acetate, Butyrate and Mixed Acid-fed Sludge..........................................69 5.2.3 SMA Test of Butyrate-fed Sludge Using Different Substrates.....................................72 5.2.4 SMA Test of Mixed Acid-fed Sludge Using Different Substrates.....................................74 5.3 SMA OF ACETATE, BUTYRATE AND MIXED ACID-FED SLUDGE...................................................77 5.4 EVALUATION OF POTENTIAL METHANE PRODUCTION OF UASB DIGESTERS BY SMA TEST....................................79 5.4 EVALUATION OF COD REMOVAL OF UASB DIGESTERS BY SMA TEST.....................................................80 CHAPTER 6 CONCLUSIONS....................................83 6.1 EFFECT OF OLRS TO UASB PERFORMANCE................83 6.2 EFFECT OF VFA COMPOSITION TO UASB PERFORMANCE.....84 6.3 EVALUATION OF UASB PERFORMANCE BY SMA TEST........85 REFERENCES...............................................86 | |
dc.language.iso | en | |
dc.title | 揮發性脂肪酸對上流式厭氣污泥床反應器表現之影響 | zh_TW |
dc.title | Effect of Volatile Fatty Acid on Upflow Anaerobic Sludge Blanket Digester Performance | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱曉萍(Sheau-Pyng Ju),鄒光耀(Kuan-Yeow Show),陳炳宏(Bing-Hung Chen),黃志彬(Chih-Pin Huang),劉志成(Jhy-Chern Liu) | |
dc.subject.keyword | 厭氧消化,揮發性脂肪酸,上流式厭氣污泥床反應器, | zh_TW |
dc.subject.keyword | anaerobic digestion,volatile fatty acid,upflow anaerobic sludge blanket, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 734.84 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。