Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29581
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑萍(Shwu-Bin Lin)
dc.contributor.authorWei-Chien Tangen
dc.contributor.author唐偉倩zh_TW
dc.date.accessioned2021-06-13T01:11:06Z-
dc.date.available2009-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citationAfdhal, N. H., and Nunes, D. (2004) Evaluation of liver fibrosis: a concise review. Am. J. Gastroenterol. 99, 1160-1174
Albanis, E., and Friedman, S. L. (2001) Hepatic fibrosis. Pathogenesis and principles of therapy. Clin. Liver Dis. 5, 315-334
Aube, C., Racineux, P. X., Lebigot, J., Oberti, F., Croquet, V., Argaud, C., Cales, P., and Caron, C. (2004) [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J. Radiol. 85, 301-306
Aube, C., Winkfield, B., Oberti, F., Vuillemin, E., Rousselet, M. C., Caron, C., and Cales, P. (2004) New Doppler ultrasound signs improve the non-invasive diagnosis of cirrhosis or severe liver fibrosis. Eur. J. Gastroenterol. Hepatol. 16, 743-751
Balbona, K., Tran, H., Godyna, S., Ingham, K. C., Strickland, D. K., and Argraves, W. S. (1992) Fibulin binds to itself and to the carboxyl-terminal heparin-binding region of fibronectin. J. Biol. Chem. 267, 20120-20125
Bause, E. (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem. J. 209, 331-336
Bedossa, P., and Poynard, T. (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 24, 289-293
Benyon, R. C., and Arthur, M. J. (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis. 21, 373-384
Bokarewa, M., Dahlberg, L., and Tarkowski, A. (2005) Expression and functional properties of antibodies to tissue inhibitors of metalloproteinases (TIMPs) in rheumatoid arthritis. Arthritis Res Ther. 7, R1014-R1022
Cales, P., Oberti, F., Michalak, S., Hubert-Fouchard, I., Rousselet, M. C., Konate, A., Gallois, Y., Ternisien, C., Chevailler, A., and Lunel, F. (2005) A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology. 42, 1373-1381
Coverdale, S. A., Samarasinghe, D. A., Lin, R., Kench, J., Byth, K., Khan, M. H., Crewe, E., Liddle, C., George, J., and Farrell, G. C. (2003) Changes in antipyrine clearance and platelet count, but not conventional liver tests, correlate with fibrotic change in chronic hepatitis C: value for predicting fibrotic progression. Am. J. Gastroenterol. 98, 1384-1390
Diamandis, E. P., and van der Merwe, D. E. (2005) Plasma protein profiling by mass spectrometry for cancer diagnosis: opportunities and limitations. Clin. Cancer Res. 11, 963-965
El-Gohary, A. M., Fawaz, N. A., Hassoba, H. M., Serwah, A., and Ali, M. (2004) Soluble ICAM-1 in patients with chronic hepatitis C infection: a prognostic marker of disease activity. Egypt. J. Immunol. 11, 109-119
Forns, X., Ampurdanes, S., Llovet, J. M., Aponte, J., Quinto, L., Martinez-Bauer, E., Bruguera, M., Sanchez-Tapias, J. M., and Rodes, J. (2002) Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 36, 986-992
Friedman, S. L., and Bansal, M. B. (2006) Reversal of hepatic fibrosis -- fact or fantasy? Hepatology. 43, S82-S88
Gygi, S. P., Han, D. K., Gingras, A. C., Sonenberg, N., and Aebersold, R. (1999) Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis. 20, 310-319
Imbert-Bismut, F., Messous, D., Thibault, V., Myers, R. B., Piton, A., Thabut, D., Devers, L., Hainque, B., Mercadier, A., and Poynard, T. (2004) Intra-laboratory analytical variability of biochemical markers of fibrosis (Fibrotest) and activity (Actitest) and reference ranges in healthy blood donors. Clin. Chem. Lab Med. 42, 323-333
Imbert-Bismut, F., Ratziu, V., Pieroni, L., Charlotte, F., Benhamou, Y., and Poynard, T. (2001) Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study. Lancet. 357, 1069-1075
Iredale, J. P. (2003) Cirrhosis: new research provides a basis for rational and targeted treatments. BMJ. 19;327, 143-147
Ishak, K., Baptista, A., Bianchi, L., Callea, F., De, G. J., Gudat, F., Denk, H., Desmet, V., Korb, G., MacSween, R. N., and . (1995) Histological grading and staging of chronic hepatitis. J. Hepatol. 22, 696-699
Kershenobich, S. D., and Weissbrod, A. B. (2003) Liver fibrosis and inflammation. A review. Ann. Hepatol. 2, 159-163
Knittel, T., Kobold, D., Piscaglia, F., Saile, B., Neubauer, K., Mehde, M., Timpl, R., and Ramadori, G. (1999) Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-)fibroblast subpopulations in hepatic tissue repair. Histochem. Cell Biol. 112, 387-401
Kotoh, K., Nakamuta, M., Kohjima, M., Fukushima, M., Morizono, S., Kobayashi, N., Enjoji, M., and Nawata, H. (2004) Arg-Gly-Asp (RGD) peptide ameliorates carbon tetrachloride-induced liver fibrosis via inhibition of collagen production and acceleration of collagenase activity. Int. J. Mol. Med. 14, 1049-1053
Ludwig, J. A., and Weinstein, J. N. (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 5, 845-856
Matsumoto, K., Ishikawa, H., Nishimura, D., Hamasaki, K., Nakao, K., and Eguchi, K. (2004) Antiangiogenic property of pigment epithelium-derived factor in hepatocellular carcinoma. Hepatology. 40, 252-259
Murphy, F. R., Issa, R., Zhou, X., Ratnarajah, S., Nagase, H., Arthur, M. J., Benyon, C., and Iredale, J. P. (2002) Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J. Biol. Chem. 277, 11069-11076
Nilsson, C. L. (2003) Lectins: proteins that interpret the sugar code. Anal. Chem. 75, 348A-353A
Oben, J. A., Roskams, T., Yang, S., Lin, H., Sinelli, N., Torbenson, M., Smedh, U., Moran, T. H., Li, Z., Huang, J., Thomas, S. A., and Diehl, A. M. (2004) Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut. 53, 438-445
Oberti, F., Burtin, P., Maiga, M., Valsesia, E., Pilette, C., and Cales, P. (1998) Gastroesophageal endoscopic signs of cirrhosis: independent diagnostic accuracy, interassociation, and relationship to etiology and hepatic dysfunction. Gastrointest. Endosc. 48, 148-157
Pata, C., Yazar, A., Altintas, E., Polat, G., Aydin, O., Tiftik, N., and Konca, K. (2003) Serum levels of intercellular adhesion molecule-1 and nitric oxide in patients with chronic hepatitis related to hepatitis C virus: connection fibrosis. Hepatogastroenterology. 50, 794-797
Petersen, S. V., Valnickova, Z., and Enghild, J. J. (2003) Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization. Biochem. J. 374, 199-206
Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M., Holzman, T., Hussey, P., Igra, M., Maclean, B., Lin, C. W., Detter, A., Fang, R., Faca, V., Gafken, P., Zhang, H., Whiteaker, J., States, D., Hanash, S., Paulovich, A., and McIntosh, M. W. (2006) Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome. Res. 5, 112-121
Regev, A., Berho, M., Jeffers, L. J., Milikowski, C., Molina, E. G., Pyrsopoulos, N. T., Feng, Z. Z., Reddy, K. R., and Schiff, E. R. (2002) Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 97, 2614-2618
Rosenberg, W. M., Voelker, M., Thiel, R., Becka, M., Burt, A., Schuppan, D., Hubscher, S., Roskams, T., Pinzani, M., and Arthur, M. J. (2004) Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 127, 1704-1713
Roth, J. (2002) Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285-303
Rothlein, R., Mainolfi, E. A., Czajkowski, M., and Marlin, S. D. (1991) A form of circulating ICAM-1 in human serum. J. Immunol. 147, 3788-3793
Schaffner, F., and Klion, F. M. (1968) Chronic hepatitis. Annu. Rev Med. 19:25-38
Schlaf, G., Schmitz, M., Heine, I., Demberg, T., Schieferdecker, H. L., and Gotze, O. (2004) Upregulation of fibronectin but not of entactin, collagen IV and smooth muscle actin by anaphylatoxin C5a in rat hepatic stellate cells. Histol. Histopathol. 19, 1165-1174
Thampanitchawong, P., and Piratvisuth, T. (1999) Liver biopsy:complications and risk factors. World J. Gastroenterol. 5, 301-304
Wai, C. T., Greenson, J. K., Fontana, R. J., Kalbfleisch, J. D., Marrero, J. A., Conjeevaram, H. S., and Lok, A. S. (2003) A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 38, 518-526
Xu, X. Q., Leow, C. K., Lu, X., Zhang, X., Liu, J. S., Wong, W. H., Asperger, A., Deininger, S., and Eastwood Leung, H. C. (2004) Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics. Proteomics. 4, 3235-3245
Yang, Z., and Hancock, W. S. (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A. 1053, 79-88
Ye, B., Cramer, D. W., Skates, S. J., Gygi, S. P., Pratomo, V., Fu, L., Horick, N. K., Licklider, L. J., Schorge, J. O., Berkowitz, R. S., and Mok, S. C. (2003) Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin. Cancer Res. 9, 2904-2911
Zhang, H., Li, X. J., Martin, D. B., and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 21, 660-666
Zhang, H., Yi, E. C., Li, X. J., Mallick, P., Kelly-Spratt, K. S., Masselon, C. D., Camp, D. G., Smith, R. D., Kemp, C. J., and Aebersold, R. (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell Proteomics. 4, 144-155
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29581-
dc.description.abstract蛋白質體學是近年來發展極為快速,可以廣泛應用於各種領域的技術,尤其是在醫學領域中,可應用於疾病的檢測與生物標記的發展上。由於體內的蛋白質種類相當的多,科學家們利用各項檢體前處理來減低所分析蛋白體的複雜度,以提昇蛋白質的檢測效果。其中,醣蛋白是體內非常重要的成分,存在於血液數千種的蛋白質中有50%以上是醣蛋白,且醣化是非常重要的蛋白轉譯後修飾,在許多疾病上,部分的蛋白醣化修飾的改變可做為偵測疾病的重要生物標記,因此,利用蛋白質體學研究醣蛋白的變化情形可以作為發展新的生物標記的方式。
  肝纖維化發生的主因之一為C型肝炎病毒的感染而導致慢性發炎,若反覆發生可能導致肝硬化或是肝癌,目前所用來診斷肝纖維化的主要方式為活體肝組織切片,有高侵犯性及採樣誤差等缺點,而其他血液中的生物標記檢驗往往對肝纖維化不具有專一性,且敏感度不高,因此,發展新的檢驗標記是刻不容緩的。
  在本研究中,我們利用交叉比對病人與正常人血清檢體的N-醣蛋白體來篩選肝纖維化的標誌。首先,將血清中的醣蛋白氧化之後,利用hydrazide bead來抓取醣蛋白,再用胰蛋白酵素切除蛋白質不含醣的胜肽,最後利用醣解酵素切下原先含有醣修飾的胜肽,送入質譜儀中進行胜肽序列分析,再以分析軟體進行資料庫比對鑑定出蛋白質以得到醣蛋白質體。
本論文分兩部分來呈現實驗結果。第一部份,參照文獻發表的實驗條件進行肝纖維化病人檢體的醣蛋白質體分析,發現了七個蛋白質在病人檢體中有增加的情形,這些候選生物標記包含三個已知的肝纖維化標記,包括ICAM-1, TIMP-1與fibronectin,及四個未被發表過與肝纖維化有關的醣蛋白。利用ELISA加以確認後,發現這個方法的確可以應用來篩選疾病的生物標記。第二部份,我們以相同的化學抓取醣蛋白的方法,利用醣解酵素處理條件的不同,發現在加強醣解酵素處理條件下,可以增加含量低的醣蛋白的檢出率,且得到九個新發現的肝纖維化的標誌,這些新發現的生物標記作為未來發展早期偵測肝纖維化的標記的可行性正在進行評估。
zh_TW
dc.description.abstractProteomic analysis is a highly-sensitive and high-throughput technique useful to screen biomarkers for disease management or drug discovery. N-glycoproteins are important components in blood, and glycosylation is a common post-translational modification crucial for function of many proteins. Therefore N-glycoproteome is a good target for biomarkers discovery.
Hepatitis C virus infection is widespread in the world leading to complicated diseases which includes liver fibrosis and its end stage, cirrhosis, as well as the progression to hepatocellular carcinoma. Currently, the diagnosis of liver fibrosis is dependent on biopsy, which is highly invasive and may miss fibrosis due to patchy distribution of the lesion. The discovery of less-invasive and higher sensitive biomarkers to diagnose liver progression is urgent.
In this study, N-glycoproteome profiling of sera from liver fibrosis patients and normal controls was used for biomarkers discovery. The technique is based on capturing of glycoproteins via covalent linkages of carbohydrate moiety with hydrazide-beads; removing non-glycosylated peptides by trypsin digestion, and then using peptide-N-glycosidase (PNGase F) to release peptides that linked to the beads via NXS/T motif in which X represents any amino acid residue except proline. These formerly N-linked peptides were identified by nanoLC-MS/MS and the results were analyzed by computational proteomics analysis system (CPAS) software.
Results of this study will be divided into two parts. In the first part, liver fibrosis was used as a disease model to evaluate the method. We found seven candidate fibrosis markers. These candidate biomarkers consist of three known fibrosis biomarkers, ICAM-1, TIMP-1 and fibronectin, and four new biomarkers. In the second part, we used a modified condition and found that the new protocol facilitated finding of low abundant proteins as candidate biomarkers. The modified capturing protocol used a more extensive PNGase F treatment condition and nine candidate markers were obtained.
The results indicate that N-glycoproteome profiling approach is promising for the discovery of serum biomarkers. Its advantages including simple protocol, high sensitivity and fewer samples promise the application on biomarkers screening. The value of these newly identified biomarkers as serum markers for liver fibrosis is under investigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:11:06Z (GMT). No. of bitstreams: 1
ntu-96-R94424009-1.pdf: 729379 bytes, checksum: 3f786cc78c768b27bc761b75bba8a5e4 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Figure contents------------------------------------------------------------------------------------ 02
Table contents------------------------------------------------------------------------------------- 03
Supplement contents------------------------------------------------------------------------------04
Appendix contents--------------------------------------------------------------------------------05
Abstract in English--------------------------------------------------------------------------------06
Abstract in Chinese-------------------------------------------------------------------------------08
Part I
Abstract---------------------------------------------------------------------------------------------11
Introduction----------------------------------------------------------------------------------------14
Methods-------------------------------------------------------------------------------------------- 17
Results----------------------------------------------------------------------------------------------22
Discussion------------------------------------------------------------------------------------------25
Figures----------------------------------------------------------------------------------------------28
Tables-----------------------------------------------------------------------------------------------33
Part II
Abstract--------------------------------------------------------------------------------------------36
Introduction----------------------------------------------------------------------------------------38
Methods-------------------------------------------------------------------------------------------- 41
Results----------------------------------------------------------------------------------------------43
Discussion------------------------------------------------------------------------------------------45
Figures----------------------------------------------------------------------------------------------47
Tables-----------------------------------------------------------------------------------------------52
References------------------------------------------------------------------------------------------57
Supplements---------------------------------------------------------------------------------------62
Appendixes----------------------------------------------------------------------------------------82
Figure contents
Figure 1: Flow chart of N-glycoproteome capture method----------------------------------28
Figure 2: Comparisons of the identified proteins within normal controls and between controls and patients------------------------------------------------------------------------------29
Figure 3: Flow chart of biomarker screening from the N-glycoproteomes ---------------30
Figure 4: The peptides and MS2 spectra of candidate biomarkers-------------------------31
Figure 5: Validation of candidate biomarkers by ELISA and Western blot analysis---------------------------------------------------------------------------------------------32
Figure 6: Flow chart of N-glycoproteome capture method----------------------------------47
Figure 7: Comparison of the proteins identified between pooled control and pooled patients----------------------------------------------------------------------------------------------48
Figure 8: Comparison of identified proteins in three control samples treated with the same condition-------------------------------------------------------------------------------------49
Figure 9: Comparison of proteins identified in control samples between mild condition and extensive condition--------------------------------------------------------------------------50
Figure 10: Screening condition of candidate biomarkers of liver fibrosis-----------------51
Table contents
Table 1: Summary of the results from CPAS analysis of serum samples treated by mild condition--------------------------------------------------------------------------------------------33
Table 2: Quantification of candidate biomarkers in normal controls and liver fibrosis patients----------------------------------------------------------------------------------------------34
Table 3: Summary of the results from CPAS analysis of serum samples treated by extensive condition-------------------------------------------------------------------------------52
Table 4: Comparison on the proficiency of mild (M) condition and extensive (E) condition--------------------------------------------------------------------------------------------53
Table 5: A list of proteins identified only in extensive condition-treated normal control sera--------------------------------------------------------------------------------------------------54
Supplement contents
Supplement figure 1: Liver fibrosis resulted from activation of hepatic stellate cells (HSCs) ---------------------------------------------------------------------------------------------62
Supplement table 1: A list of N-glycoproteins identified from sera of controls and patients by mild condition-----------------------------------------------------------------------63
Supplement table 2: Clinical information of liver fibrosis patients------------------------71
Supplement table 3: A list of N-glycoproteins identified from sera of controls and patients by extensive condition------------------------------------------------------------------72

Appendix contents
A.Chemicals and materials---------------------------------------------------------------------82
B.Formulas---------------------------------------------------------------------------------------83
C.Equipments------------------------------------------------------------------------------------83
dc.language.isoen
dc.subject肝纖維化zh_TW
dc.subject生物標記zh_TW
dc.subject蛋白質體學zh_TW
dc.subject醣蛋白zh_TW
dc.subjectliver fibrosisen
dc.subjectbiomarkeren
dc.subjectproteomicsen
dc.subjectglycoproteinen
dc.titleC型肝炎病毒所引起肝纖維化的檢驗標記之研究zh_TW
dc.titleDiscovery of biomarkers for hepatitis C virus related liver fibrosisen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高照村,廖淑貞,陳進庭
dc.subject.keyword肝纖維化,醣蛋白,蛋白質體學,生物標記,zh_TW
dc.subject.keywordliver fibrosis,glycoprotein,proteomics,biomarker,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2007-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
712.28 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved