請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29573
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張康聰(Kang-Tsung Chang) | |
dc.contributor.author | Shih-Min Yen | en |
dc.contributor.author | 顏士閔 | zh_TW |
dc.date.accessioned | 2021-06-13T01:10:50Z | - |
dc.date.available | 2007-09-01 | |
dc.date.copyright | 2007-07-26 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-20 | |
dc.identifier.citation | Austin, M.P. (1980) Searching for a model for use in vegetation analysis, Vegetation, 42: 11–21.
Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modeling, Ecological Modelling, 157: 101–118. Brown, J.H., Stevens, G.C., and Kaufman, D.M. (1996) The geographic range: size, shape, boundaries, and internal structure, Annual Review of Ecology and Systematics, 27: 597–623. Cawsey, E.M., Austin, M.P., and Baker, B.L. (2002) Regional vegetation mapping in Australia: a case study in the practical use of statistical modelling, Biodiversity and Conservation, 11: 2239–2274. Clements, F.E. (1936) Nature and structure of climax, The Journal of Ecology, 24(1): 252–284. Chang, K.T. (2006) Introduction to Geographic Information Systems. 3rd ed. International ed., Singapore: McGraw-Hill. Chang, L.M. (1963) Ecological studies of Chamaecyapris formosensis and Chamaecyparis taiwanensis mixed forest in Taiwan, The Bulletin of Taiwan Forestry Research Institute no.91. Taiwan Forestry Research Institute, Taipei, Taiwan. [In Chinese with English abstract]. Chatfield, C. (1995) Model uncertainty, data mining and statistical inference, Journal of the Royal Statistical Society, Series A, 158: 419–466. Chen, P.J. (2002) An ROC curve design method for neural networks. Master thesis, National Sun Yat-Sen University, Taiwan. [in Chinese] Chen, Y.T. (2003) Estimation of Atmospheric Deposition and Canopy Exchange in the YunaYang Lake Forest Ecosystem. Master Thesis, National Dong Hwa University, Taiwan. [In Chinese] Chen, Y.F. (2004) The Hemlock Forest. Vegetation of Taiwan vol.5, Taiwan: Avanguard. Chiou C.R., Lai Y.J., Li, C.F., and Liang, Y.C. (2004) The application of GIS on the simulation of climate change impact on forest – a case study of Taiwan Cypress forest, Greater China GIS Conference and Exhibition 2004, Hong Kong: Hong Kong Geographic Information System Association. [in Chinese with English abstract]. Chiou, C.R., Yu, C.F., and Li, C.F. (2005) The planning and present situation of Taiwan Vegetation Information System, Proceedings of the Third Symposium of Vegetaion Diversity in Taiwan, 202 – 215. Forestry Bureau, Council of Agriculture, Taipei, Taiwan. (in Chinese). Chiou C.R., Lin, J.R., and Li, C.F. (2006) Analysis of distribution characteristics of Taiwan Hemlock communities in Taiwan, The Fourth Symposium of Vegetation Biodiversity in Tawian, Taipei: Taiwan Biodiversity Association. [in Chinese with English abstract] Dobzhansky, T. (1950) Evolution in the tropics, American Scientist, 38: 209–211. Eyre, M.D., Rushton, S.P., Luff, M.L., and Telfer, M.G. (2004) Predicting the distribution of ground beetle species (Coleoptera, Carabidae) in Britain using land cover variables, Journal of Environmental Management, 72: 163–174. Fielding, A.H., and Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models, Environmental Conservation, 24(1): 38–49. Flenley, J.R. (1995) Cloud forest, the Massenerhebung effect, and ultraviolet isolation. In: Hamilton, L.S., Juvik, J.O., and Scatena, F.N. (eds.) Tropical Montane Cloud Forests, New York: Springer-Verlag, 150–155. Forestry Bureau, (1995) The Third Forest Resource and Land Use Inventory. Council of Agriculture, Taiwan. [in Chinese]. Gleason, H.A. (1927) Further views on the succession-concept, Ecology, 8(3): 299–326. Grubb, P.J. (1971) Interpretation of the ‘Massenerhebung’ effect on tropical mountains, Nature, 229: 44–45. Gu, H.L., Chen, T.C., Lai, C.W., Hsia, Y.J. (2006) Predicting species spatial distributions in Li-Wu Watershed using Generalized Additive Models, The Fourth Symposium of Vegetation Biodiversity in Tawian, Taipei: Taiwan Biodiversity Association. [in Chinese with English abstract] Guisan, A., Theurillat, J.P., and Kienast, F. (1998) Predicting the potential distribution of plant species in an alpine environment, Journal of Vegetation Science, 9: 65–74. Guisan, A., and Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology, Ecological Modelling, 135: 147–186. Guisan, A., Edwards Jr., T.C., and Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene, Ecological Modelling, 157: 89–100. Hamilton, L.S., Juvik, J.O., and Scatena, F.N. (1995) The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In: Hamilton, L.S., Juvik, J.O., and Scatena, F.N. (eds.) Tropical Montane Cloud Forests, New York: Springer-Verlag, 1–23. Hargrove, W. W., and Hoffman, F. M. (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions, Environmental Management, 34(Suppl.1): S39–S60. Hastie, T.J., and Tibshirani, R.J. (1990) Generalized Additive Models. London: Chapman & Hall. Hirzel, A. H., Hausser, J., Chessel, D., and Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?, Ecology, 83(7): 2027–2036. Hsu, N.L. (2005) The Climatic Difference in Taiwan and Its Correlation with Plant Distribution – Dealing with Chamaecyparis, Michelia compressa, and Lagerstroemia subcostata. Master Thesis, National Taiwan University, Taiwan. [in Chinese]. Hyvönen, T., Holopainen, J., and Tiainen, J. (2005) Detecting the spatial component of variation in the weed community at the farm scale with variation partitioning by canonical correspondence analysis, Weed Research, 45(1): 48–56. Kellman, M.C. (1980) Plant Geography. London: Methuen &co. Ltd. Kundel, H.L., and Polansky, M. (2003) Measurement of observer agreement, Radiology, 228: 303–308. Landis, J.R., and Koch, G.G. (1977) The measurement of observer agreement for categorical data, Biometrics, 33(1): 159–174. Lehmann, A., Leathwick, J.R., and McC. Overton, J. (2002) Assessing New Zealand fern diversity from spatial predictions of species assemblages, Biodiversity and Conservation, 11: 2217–2238. Levins, R. (1966) The strategy of model building in population biology, American Scientist, 54: 421–431. Liang, Y.C. (2004) Studies on zoning the ecoregion at domain and division levels in Taiwan. Master thesis, National Taiwan University, Taiwan. [in Chinese with English summary] Liou, C.Y., and Tseng, Y.H. (1999) Vegetation ecology of Shalihsian Creek Watershed in Yushan National Park, Journal of Natational Park, 9(1): 11–31. [in Chinese with English summary] Lu, K.C. (2003) Studies on the vegetation ecology of Chilan major wildlife habitats (II). Vegetation Ecology of Nature Reserve in Taiwan National Forest. Forestry Bureau, Council of Agriculture, Taiwan. [in Chinese] McGrew, Jr., J.C., and Monroe, C.B. (1993) An Introduction to Statistical Problem Solving in Geography. Iowa: Wm. C. Brown Communications, Inc. Miller, J., and Franklin, J. (2002) Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling, 157: 227–247. Mladenoff, D.J., Theodore, A.S., and Wydeven, A.P. (1999) Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecolological Applications, 9(1): 37–44. Mörtberg, U., and Karlström, A. (2005) Predicting forest grouse distribution taking account of spatial autocorrelation, Journal of Nature Conservation, 13: 147–159. Muñoz, J., and Felicísimo, A.M. (2004) Comparison of statistical methods commonly used in predictive modelling, Journal of Vegetation Science, 15: 285–292. Nagelkerke, N.J.D. (1991) A note on a general definition of the coefficient of determination, Biometrika, 78(3): 692–692. Nielson, L., and Smith, C.L. (2005) Influences on residential yard care and water quality: Tualatin Watershed, Oregon, Journal of American Water Resource Association, 41(1): 93–106. Ou, C.H., Lu, K.C., Wang, C.C., Chang, M.C., Chiou, C.A., and Tseng, H.Y. (1994) Studies on the vegetation of Shuangkueihu Nature Reserve. Vegetation Ecology of Nature Reserve in Taiwan National Forest, Forestry Bureau, Council of Agriculture, Taiwan. [in Chinese] Ou, C.H., Lu, K.C., and Lin, H.C. (2003) Study on the vegetation ecology of the Mt. Ta-Shei Region, Journal of National Park, 13(1): 33–61. [in Chinese with English summary] Pearce, J. and Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression, Ecological Modelling, 133: 225–245. Peterson, A.T., and Vieglais D.A. (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem, BioScience, 51(5): 363–371. Petit, S., Haysom, K., Pywell, R., Warman, L., Allen, D., Booth, R., and Firbank, L. (2003) Habitat-based models for predicting the occurrence of ground-beetles in arable landscapes: two alternative approaches, Agriculture, Ecosystems and Environment, 95: 19–28. Rao, C.R. (1973) Linear statistical inference and its applications 2nd ed., New York: Wiley. Robertson, M.P., Peter, C.I., Villet, M.H., and Ripley, B.S. (2003) Comparing models for predicting species’ potential distributions: a case study using correlative and mechanistic predictive modeling techniques, Ecological Modelling, 164: 153–167. Shafii, B., Prince, W.J., Prather, T.S., Lass, L.W., and Thill, D.C. (2003) Predicting the likelihood of yellow starthistle (Centaurea solstitialis) occurrence using landscape characteristics, Weed Science, 51: 748–751. Stadtmuller, T. (1987) Cloud Forests in the Humid Tropic: A Bibliographic Review. The United Nations University, Tokyo. Su, H.J. (1984a) Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations in climatic factors, Quarterly Journal of Chinese Forestry, 17(4): 57–73. Su, H.J. (1984b) Studies on the climate and vegetation type of the natural forest in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient, Quarterly Journal of Chinese Forestry, 17(4): 57–73. Su, H.J. (1987) Forest habitat factors and their quantitative assessment, Quarterly Journal of Chinese Forestry, 20(1): 1–14. Su, H.J. (1988) Studies on the vegetation ecology of Hsuehshan Junifer Nature Reserve. Vegetation Ecology of Nature Reserve in Taiwan National Forest, Forestry Bureau, Council of Agriculture, Taiwan. [in Chinese] Su, H.J., and Wang, L.J. (1988) Forest vegetations in the upper Nanshihchi Watershed of northern Taiwan, Quarterly Journal of the Experimental of National Taiwan University, 2(4): 89–100. [in Chinese with English summary] Su, H.J. (1991) Studies on the vegetation ecology of Peitawushan coniferous and broad-leafed forest nature reserve (I): vegetation analysis and evaluation of representativeness. Vegetation Ecology of Nature Reserve in Taiwan National Forest. Taiwan, Forestry Bureau, Council of Agriculture, Taiwan. [in Chinese with English summary] Su, H.J. (1992) Vegetation of Taiwan: altitudinal vegetation zones and geographical climatic regions, Institute of Botany, Academia Sinica Monograph series no.11, Academia of Sinica, Taiwan. [in Chinese with English abstract] ter Braak, C. J. F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis, Ecology, 67(5): 1167–1179. Zaniewski, A.E., Lehmann, A., and McC. Overtion, J. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns, Ecological Modelling, 157: 261–280. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29573 | - |
dc.description.abstract | 隨著經濟的快速發展,對於自然生態環境的衝擊也日益增大,生物多樣性保育的相關議題也是現代生態保育的關注的重點。由於植物分布模式的建立是了解植物生態的要件,因此如何透過有效的分布模式建立來探討物種分布特性是保育決策重要的一環,也是探討物種生態系關連的重要連結。台灣林植物的分布方面,台灣冷杉、台灣鐵杉及檜木是三種最重要也最優勢的天然針葉樹林型,其分布亦有相混生的情形。本研究主要目的在於,利用緯度及海拔高度兩環境因子,運用邏輯迴歸方法與多項迴歸方法,以台灣為尺度首先建立此三種針葉林型的分布模式,並討論是否能由模式進而探討其混生情形。研究結果顯示,檜木分布約在海拔1000 – 2600 m,台灣冷杉約2700 – 3700 m,兩者之間在約2700 m處有明顯分界線,此處亦就是台灣鐵杉最為優勢的區域。總括而論,僅利用緯度及海拔兩個general環境因子即可有效預測樹種於全台的分布,引用大山塊加熱效應、東北季風與雲霧帶等較為local的因子可更有效的解釋各林型的分布,同時也可清楚說明三種林型的混生情形。 | zh_TW |
dc.description.abstract | Under the rapid rate of urbanization and demand for forest resources, vegetation covers have also decreased at a proportional rate in Taiwan. Government agencies and forest managers have come to realize the importance of the ecosystem and begun to act on conservational processes. Prediction of vegetation distribution would be considered one of the primary steps in this effort. This study has developed logistic and polynomial regression models for predicting the distribution of Abies kawakamii (Taiwan Fir), Tsuga chinensis var. formosana (Taiwan Hemlock), and Chamaecyparis spp. (Taiwan Cypress). The models achieved high R2 and ROC. The Massenerhebung Effect, the northeasterly monsoons, and the cloud belt were also brought in to better explain the models against the species distribution in the real world. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:10:50Z (GMT). No. of bitstreams: 1 ntu-96-R94228026-1.pdf: 5909422 bytes, checksum: af1910c282f1b5a5803909460e9e7016 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | SECTION 1 INTRODUCTION 1
1.1 BACKGROUND 1 I. Theories of Vegetation Community 2 II. Definition of “Niche” 4 1.2 OBJECTIVES 4 SECTION 2 LITERATURE REVIEW 9 2.1 EXPLANATORY AND PREDICTIVE MODELS 9 2.2 PREDICTIVE MODELING 10 2.3 MODEL DEVELOPMENT 13 I. Data Partitioning 14 2.4 ECOLOGICAL MODELS 16 2.5 MODEL ASSUMPTIONS 18 2.6 TYPES OF GRADIENTS 20 2.7 POSSIBLE DATA ERRORS 21 2.8 PRELIMINARY CONCLUSION 23 SECTION 3 METHODOLOGY 24 3.1 DATA 24 I. Dataset 24 III. Predictor Variables 29 3.2 MODEL BUILDING 32 I. Logistic Regression Model 32 II. Logistic Model Evaluation 36 III. Polynomial Regression Model 38 IV. Species Distribution versus Warmth Index 39 SECTION 4 RESULTS 41 4.1 LOGISTIC REGRESSION MODELS 41 I. Probability Map 44 II. Frequency Histogram 46 4.2 POLYNOMIAL REGRESSION MODELS 48 4.3 GOODNESS-OF-FIT TEST 52 SECTION 5 DISCUSSION 55 5.1 LOGISTIC REGRESSION MODELS 55 I. Model Verification Using Historical Plots 55 (a) Taiwan Fir 57 (b) Taiwan Hemlock 58 (c) Taiwan Cypress 60 II. Species Distribution 61 (a) Mountain Mass Heating Effect (Massenerhebung) 62 (b) Taiwan Fir versus Taiwan Cypress 65 5.2 CLOUD BELT 68 5.3 POLYNOMIAL REGRESSION MODELS 75 I. Taiwan Fir 77 II. Taiwan Hemlock 78 III. Taiwan Cypress 78 IV. Massenerhebung Effect and the Tropic of Cancer 79 SECTION 6 CONCLUSION 81 REFERENCES 85 APPENDIX I: LOGISTIC REGRESSION MODELS SPECIES DISTRIBUTION 95 | |
dc.language.iso | en | |
dc.title | 台灣三種針葉林型分布模式之研究 | zh_TW |
dc.title | Modeling Species Distributions of Three Coniferous Forest Types in Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 邱祈榮(Chyi-Rong Chiou),蔡博文(Bor-Wen Tsai) | |
dc.subject.keyword | 植群分布,邏輯迴歸模式,多項迴歸模式,台灣冷杉,台灣鐵杉,檜木, | zh_TW |
dc.subject.keyword | species distribution,logistic regression modle,polynomial regression model,Taiwan Fir,Taiwan Hemlock,Taiwan Cypress, | en |
dc.relation.page | 97 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 5.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。