請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29568完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Chiao-Yun Lee | en |
| dc.contributor.author | 李巧芸 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:10:41Z | - |
| dc.date.available | 2009-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-18 | |
| dc.identifier.citation | 1. Cotsarelis G, Millar SE. Towards a molecular understanding of hair loss and its treatment. Trends Mol Med 2001;7:293-301.
2. Orentreich N. Autografts in alopecias and other selected dermatological conditions. Ann N Y Acad Sci 1959;83:463-479. 3. Price VH. Treatment of hair loss. N Engl J Med 1999;341:964-973. 4. Stenn KS, Cotsarelis G. Bioengineering the hair follicle: fringe benefits of stem cell technology. Curr Opin Biotechnol 2005;16:493-497. 5. Philpott M, Paus R. Principles of hair follicle morphogenesis. In: Chuong CM, editor. Molecular basis of epithelial appendage morphogenesis. U.S.A: R.G Landes Company, 1998. p. 75-110. 6. Millar SE. Molecular mechanisms regulating hair follicle development. J Invest Dermatol 2002;118:216-225. 7. Stenn K, Parimoo S, Prouty SM. Growth of the hair follicle: a cycling and regeneration biological system. In: Chuong CM, editor. Molecular basis of epithelial appendage morphogenesis. U.S.A: R.G. Landes Company, 1998. p. 111-130. 8. Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006;126:1459-1468. 9. Chase HB. Growth of the hair. Physiol Rev 1954;34:113-126. 10. Crounse RG, Stengle JM. Influence of the dermal papilla on survival of isolated human scalp hair roots in an heterologous host. J Invest Dermatol 1959;32:477-479. 11. Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 1987;32:123-127. 12. Hirai Y, Nose A, Kobayashi S, Takeichi M. Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development 1989;105:271-277. 13. Hardy MH. The secret life of the hair follicle. Trends Genet 1992;8:55-61. 14. Hirai Y, Takebe K, Takashina M, Kobayashi S, Takeichi M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell 1992;69:471-481. 15. Cohen J. The transplantation of individual rat and guineapig whisker papillae. J Embryol Exp Morphol 1961;9:117-127. 16. Oliver RF. Histological studies of whisker regeneration in the hooded rat. J Embryol Exp Morphol 1966;16:231-244. 17. Oliver RF. Regeneration of dermal papillae in rat vibrissae. J Invest Dermatol 1966;47:496-497. 18. Oliver RF. Ectopic regeneration of whiskers in the hooded rat from implanted lengths of vibrissa follicle wall. J Embryol Exp Morphol 1967;17:27-34. 19. Oliver RF. The experimental induction of whisker growth in the hooded rat by implantation of dermal papillae. J Embryol Exp Morphol 1967;18:43-51. 20. Oliver RF. The vibrissa dermal papilla and its influcnce on epidermal tissues. Br J Dermatol 1969;81:Suppl 3:55+. 21. Oliver RF. The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae. J Embryol Exp Morphol 1970;23:219-236. 22. Jahoda C, Oliver RF. The growth of vibrissa dermal papilla cells in vitro. Br J Dermatol 1981;105:623-627. 23. Jahoda CA, Oliver RF. Vibrissa dermal papilla cell aggregative behaviour in vivo and in vitro. J Embryol Exp Morphol 1984;79:211-224. 24. Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 1984;311:560-562. 25. Jahoda CA, Reynolds AJ, Oliver RF. Induction of hair growth in ear wounds by cultured dermal papilla cells. J Invest Dermatol 1993;101:584-590. 26. Messenger AG. The culture of dermal papilla cells from human hair follicles. Br J Dermatol 1984;110:685-689. 27. Walker TM, Rhodes PC, Westmoreland C. The differential cytotoxicity of methotrexate in rat hepatocyte monolayer and spheroid cultures. Toxicol In Vitro 2000;14:475-485. 28. Koide N, Shinji T, Tanabe T, Asano K, Kawaguchi M, Sakaguchi K, Koide Y, Mori M, Tsuji T. Continued high albumin production by multicellular spheroids of adult rat hepatocytes formed in the presence of liver-derived proteoglycans. Biochem Biophys Res Commun 1989;161:385-391. 29. Roberts RA, Soames AR. Hepatocyte spheroids: prolonged hepatocyte viability for in vitro modeling of nongenotoxic carcinogenesis. Fundam Appl Toxicol 1993;21:149-158. 30. Menjo M, Yamaguchi S, Murata Y, Hayashi Y, Nagaya T, Ohmori S, Refetoff S, Seo H. Responsiveness to thyroid hormone is enhanced in rat hepatocytes cultured as spheroids compared with that in monolayers: altered responsiveness to thyroid hormone possibly involves complex formed on thyroid hormone response elements. Thyroid 1999;9:959-967. 31. Wu FJ, Friend JR, Remmel RP, Cerra FB, Hu WS. Enhanced cytochrome P450 IA1 activity of self-assembled rat hepatocyte spheroids. Cell Transplant 1999;8:233-246. 32. Khalil M, Shariat-Panahi A, Tootle R, Ryder T, McCloskey P, Roberts E, Hodgson H, Selden C. Human hepatocyte cell lines proliferating as cohesive spheroid colonies in alginate markedly upregulate both synthetic and detoxificatory liver function. J Hepatol 2001;34:68-77. 33. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992;12:4565-4574. 34. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175:1-13. 35. Lin DT, Cheng LP, Kang YJ, Chen LW, Young TH. Effects of precipitation conditions on the membrane morphology and permeation characteristics. Journal of Membrane Science 1998;140:185-194. 36. Shieh MJ, Lai PS, Young TH. 5-aminosalicyclic acid permeability enhancement by a pH-sensitive EVAL membrane. Journal of Membrane Science 2002;204:237-246. 37. Young TH, Chuang WY, Wei CW, Tang CY. Investigation of the drug distribution and release characteristics from particulate membranes. Journal of Membrane Science 2001;191:199-205. 38. Young TH, Huang JH, Hung SH, Hsu JP. The role of cell density in the survival of cultured cerebellar granule neurons. J Biomed Mater Res 2000;52:748-753. 39. Young TH, Lin CW, Cheng LP, Hsieh CC. Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture. Biomaterials 2001;22:1771-1777. 40. Young TH, Hu WW. Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons. Biomaterials 2003;24:1477-1486. 41. Sakurada Y, Sueoka A, Kawahashi M. Blood Purification Device Using Membranes Derived from Polyvinyl-Alcohol), and Copolymer of Ethylene and Vinyl Alcohol. Polymer Journal 1987;19:501-513. 42. Cheng LP, Lin HY, Chen LW, Young TH. Solute rejection of dextran by EVAL membranes with asymmetric and particulate morphologies. Polymer 1998;39:2135-2142. 43. Matsuyama H, Iwatani T, Kitamura Y, Tearamoto M, Sugoh N. Solute rejection by poly(ethylene-co-vinyl alcohol) membrane prepared by thermally induced phase separation. Journal of Applied Polymer Science 2001;79:2456-2463. 44. Young TH, Chuang WY, Yao NK, Chen LW. Use of a diffusion model for assessing the performance of poly(vinyl alcohol) bioartificial pancreases. J Biomed Mater Res 1998;40:385-391. 45. Lin SJ, Jee SH, Hsaio WC, Lee SJ, Young TH. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials 2005;26:1413-1422. 46. Lin SJ, Jee SH, Hsiao WC, Yu HS, Tsai TF, Chen JS, Hsu CJ, Young TH. Enhanced cell survival of melanocyte spheroids in serum starvation condition. Biomaterials 2006;27:1462-1469. 47. Young TH, Yao CH, Sun JS, Lai CP, Chen LW. The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro. Biomaterials 1998;19:717-724. 48. Young TH, Hung CH. Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials 2005;26:4291-4299. 49. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol 2006;22:339-373. 50. Oliver RF. Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 1966;15:331-347. 51. Chiu HC, Chen JS, Wu YC. Dispase pretreatment enhances cell outgrowth from explanted human hair papillae. J Formos Med Assoc 1993;92:1029-1033. 52. Li Y, Li GQ, Lin CM, Cai XN. One-step collagenase I treatment: an efficient way for isolation and cultivation of human scalp dermal papilla cells. J Dermatol Sci 2005;37:58-60. 53. Wu JJ, Liu RQ, Lu YG, Zhu TY, Cheng B, Men X. Enzyme digestion to isolate and culture human scalp dermal papilla cells: a more efficient method. Arch Dermatol Res 2005;297:60-67. 54. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. 55. Jahoda CA, Reynolds AJ, Chaponnier C, Forester JC, Gabbiani G. Smooth muscle alpha-actin is a marker for hair follicle dermis in vivo and in vitro. J Cell Sci 1991;99 ( Pt 3):627-636. 56. Kaplan ED, Holbrook KA. Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis. Dev Dyn 1994;199:141-155. 57. Hamano T, Teramoto A, Iizuka E, Abe K. Effects of polyelectrolyte complex (PEC) on human periodontal ligament fibroblast (HPLF) function. I. Three-dimensional structure of HPLF cultured on PEC. J Biomed Mater Res 1998;41:257-269. 58. Keselowsky BG, Collard DM, Garcia AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A 2005;102:5953-5957. 59. Allen LT, Tosetto M, Miller IS, O'Connor DP, Penney SC, Lynch I, Keenan AK, Pennington SR, Dawson KA, Gallagher WM. Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials 2006;27:3096-3108. 60. Faucheux N, Tzoneva R, Nagel MD, Groth T. The dependence of fibrillar adhesions in human fibroblasts on substratum chemistry. Biomaterials 2006;27:234-245. 61. Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 2000;18:954-958. 62. Santini MT, Rainaldi G. Three-dimensional spheroid model in tumor biology. Pathobiology 1999;67:148-157. 63. Bates RC, Edwards NS, Yates JD. Spheroids and cell survival. Crit Rev Oncol Hematol 2000;36:61-74. 64. Santini MT, Rainaldi G, Indovina PL. Multicellular tumour spheroids in radiation biology. Int J Radiat Biol 1999;75:787-799. 65. Dubessy C, Merlin JM, Marchal C, Guillemin F. Spheroids in radiobiology and photodynamic therapy. Crit Rev Oncol Hematol 2000;36:179-192. 66. Jiang TX, Chuong CM. Mechanism of skin morphogenesis. I. Analyses with antibodies to adhesion molecules tenascin, N-CAM, and integrin. Dev Biol 1992;150:82-98. 67. Reynolds AJ, Jahoda CA. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 1992;115:587-593. 68. Inamatsu M, Matsuzaki T, Iwanari H, Yoshizato K. Establishment of rat dermal papilla cell lines that sustain the potency to induce hair follicles from afollicular skin. J Invest Dermatol 1998;111:767-775. 69. McElwee KJ, Kissling S, Wenzel E, Huth A, Hoffmann R. Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J Invest Dermatol 2003;121:1267-1275. 70. Zheng Y, Du X, Wang W, Boucher M, Parimoo S, Stenn K. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 2005;124:867-876. 71. Warren R, Chestnut MH, Wong TK, Otte TE, Lammers KM, Meili ML. Improved method for the isolation and cultivation of human scalp dermal papilla cells. J Invest Dermatol 1992;98:693-699. 72. Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, Takenami T, Shinji T, Mori M, Tsuji T. Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments. Exp Cell Res 1990;186:227-235. 73. Sakaguchi K, Koide N, Asano K, Takabatake H, Matsushima H, Takenami T, Ono R, Sasaki S, Mori M, Koide Y, et al. Promotion of spheroid assembly of adult rat hepatocytes by some factor(s) present in the initial 6-hour conditioned medium of the primary culture. Pathobiology 1991;59:351-356. 74. Neelamegham S, Munn LL, Zygourakis K. A model for the kinetics of homotypic cellular aggregation under static conditions. Biophys J 1997;72:51-64. 75. Ryan PL, Foty RA, Kohn J, Steinberg MS. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity. Proc Natl Acad Sci U S A 2001;98:4323-4327. 76. Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 1997;385:537-540. 77. Elliott K, Stephenson TJ, Messenger AG. Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J Invest Dermatol 1999;113:873-877. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29568 | - |
| dc.description.abstract | 很多疾病會造成毛囊缺失,而利用毛囊再生來治療人類毛囊缺失,一直是很多研究者的夢想。目前研究顯示,將毛囊真皮乳頭細胞適當地移植到表皮下方,可以使毛囊再生。然而,真皮乳頭細胞必須在聚集成多細胞球(亦稱作微組織)的情況下,才有誘導毛囊新生的功能。在先前的文獻中,大多是利用離心的方式使細胞聚集,但此方法效率低,無法在短時間內大量獲得微組織。也就是說,目前缺乏在體外直接將真皮乳頭細胞大量地培養成微組織的方法。因此我們嘗試找出適當之高分子基材,一方面能利於真皮乳頭細胞增生,一方面可以有效率地促進細胞之聚集並保有毛囊誘導的功能。
本研究中,我們發現乙烯-乙烯醇共聚合薄膜(EVAL)能促進真皮乳頭細胞形成立體微組織。首先,我們的研究顯示真皮乳頭細胞在EVAL薄膜上會有細胞增殖的現象。當真皮乳頭細胞在EVAL薄膜上達到一定的細胞數量並培養三天後,細胞會自行聚集形成許多結構緊密的微組織。而在微組織中真皮乳頭細胞約有96%的存活率並保有其原本細胞的特性。我們更進一步發現,真皮乳頭細胞能在EVAL薄膜上自行聚集成微組織的關鍵是局部的高細胞密度,而非整體的細胞數量或密度所影響。同時,我們也發現真皮乳頭細胞在EVAL薄膜上的貼附性較差。因此,我們推測微組織的形成,是由於真皮乳頭細胞在EVAL薄膜上貼附能力較差,導致細胞更容易遷移,進而縮短細胞之間的距離並增加細胞間互相碰撞的頻率。同樣地,當局部細胞密度愈高時,細胞碰撞的機會也會增加,微組織也更容易形成。 利用此方法大量生產的毛囊真皮乳頭微組織不僅能應用在毛囊再生,也能作為治療毛囊缺失之藥物的篩檢平台。在此,我們提出毛囊重建的三個步驟:先在體外大量增生真皮乳頭細胞、再將真皮乳頭細胞培養成微組織、最後將微組織移植到活體內誘導毛囊再生。此外,這種多細胞自行聚集成為立體微組織的模型,對於胚胎時期毛囊發育與細胞生物學的研究也有很大的幫助。 | zh_TW |
| dc.description.abstract | Many diseases cause gradual destruction and loss of normal hair follicles (HFs). Regeneration of HF in post-natal period can be achieved by transplanting cultured HF dermal papilla (DP) cells under the epidermis. However, the ability of DP cells to guide the transdifferentiation of epidermis into follicular structures is only preserved when they are kept in multicellular spheroids or microtissues, an intercellular organization similar to that in vivo. Up to date, there have been no efficient methods to produce DP microtissues on a large scale. In this research, we attempt to find the feasible polymer substrates that facilitate DP cell abundant expansion and self-assembly into three-dimensional multicellular spheroids.
We demonstrate that DP cells spontaneously grow into microtissues on poly (ethylene-co-vinyl alcohol) (EVAL) membrane. First we show that EVAL membrane is able to support the proliferation of DP cells. Seeded above a critical cell number on EVAL membrane, DP cells spontaneously form dense microtissues after 3 day in culture. Averagely, the cell viability of each microtissue is about 96%. And the differentiation markers of DP cells are still preserved in DP microtissues. We further demonstrate that the local cell density on a smaller area, rather than the overall cell number or the overall cell density, is key to the self-assembly of DP cells into microtissues on EVAL membrane. We suggest that the declined cell attachment to EVAL membrane may facilitate cell migration and the decreased intercellular distance may increase the frequency of intercellular collision. Similarly, a higher cell density also increases the frequency of intercellular collision and there by promotes the formation of DP microtissues. With further development, this system can produce DP microtissues efficiently for clinical applications in hair follicle regeneration and also for pharmaceutical testing. Here, we propose a three-step approach for HF reconstruction: large expansion of DP cells in vitro, cultivating DP cells into microtissues and transplantation of DP micritissues in vivo. In addition, the self-assembly of DP cells into three-dimensional microtissues can be a useful model for the study of hair follicle morphogenesis and DP physiology. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:10:41Z (GMT). No. of bitstreams: 1 ntu-96-R94548054-1.pdf: 2034666 bytes, checksum: 847515f1166d0ae8e19f366ee2c4019d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1. Introduction................................1
1.1. Hair loss and treatment.......................1 1.1.1. Hair loss .....................................1 1.1.2. Treatment for hair loss.......................1 1.2. Hair follicle morphogenesis, hair cycle and hair follicle anatomy..............................3 1.2.1. Hair follicle morphogenesis...................3 1.2.2. Hair cycle....................................5 1.2.3. Hair follicle anatomy.........................7 1.3. Tissue engineering for hair follicle regeneration ..............................................8 1.4. Biomaterial: medical polymer- EVAL...........10 1.5. Motivation and experiment design.............12 1.5.1. Motivation...................................12 1.5.2. Experiment design............................13 1.5.3. Flow chart of this study.....................14 Chapter 2. Materials and methods......................15 2.1. Poly (ethylene-co-vinyl alcohol) (EVAL) membrane preparation..................................15 2.2. Cell culture.................................16 2.2.1. Isolation of hair follicles (HFs)............16 2.2.2. Isolation of dermal papillae (DPs)...........17 2.2.3. Establishment of dermal papilla (DP) cell culture .............................................18 2.3. Cell attachment and cell growth..............20 2.3.1. Cell counting................................20 2.3.2. MTT assay ....................................21 2.4. Determination of conditions that yield DP microtissues.................................22 2.5. Morphology of DP microtissues by scanning electron micrographs.........................23 2.6. Immuno-fluorescent staining of DP cells..... 24 2.7. Viability of DP microtissues.................26 2.7.1. Trypan blue exclusion test...................26 2.7.2. Reseeding assay..............................26 Chapter 3. Results....................................27 3.1. Cell attachment............................. 27 3.2. Cell growth..................................31 3.3. The formation of DP microtissues on EVAL membrane .............................................34 3.4. Scanning electron micrographs of DP microtissues .............................................42 3.5. Phenotype preservation on EVAL membranes.....44 3.6. Viability of DP microtissues.................48 Chapter 4. Discussion.................................50 Chapter 5. Conclusion.................................56 Chapter 6. References.................................57 | |
| dc.language.iso | en | |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | 毛囊 | zh_TW |
| dc.subject | 真皮乳頭細胞 | zh_TW |
| dc.subject | 毛囊再生 | zh_TW |
| dc.subject | 多細胞球 | zh_TW |
| dc.subject | 微組織 | zh_TW |
| dc.subject | 乙烯-乙烯醇共聚合薄膜 | zh_TW |
| dc.subject | hair follicle (HF) | en |
| dc.subject | microtissues | en |
| dc.subject | multicellular spheroids | en |
| dc.subject | HF regeneration | en |
| dc.subject | dermal papilla (DP) cells | en |
| dc.subject | cell migration | en |
| dc.subject | poly (ethylene-co-vinyl alcohol) (EVAL) | en |
| dc.title | 毛囊之真皮乳頭細胞在乙烯-乙烯醇共聚合薄膜上自我聚集成立體微組織 | zh_TW |
| dc.title | Self-assembly of dermal papilla cells into three-dimensional microtissues on poly (ethylene-co-vinyl-alcohol) membrane | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林頌然(Sung-Jan Lin),邱顯清,楊銘乾,鄭逸琳 | |
| dc.subject.keyword | 毛囊,真皮乳頭細胞,毛囊再生,多細胞球,微組織,乙烯-乙烯醇共聚合薄膜,細胞遷移, | zh_TW |
| dc.subject.keyword | hair follicle (HF),dermal papilla (DP) cells,HF regeneration,multicellular spheroids,microtissues,poly (ethylene-co-vinyl alcohol) (EVAL),cell migration, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
