請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29565完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫(Lon Wang) | |
| dc.contributor.author | Chia-Shou Chang | en |
| dc.contributor.author | 張家壽 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:10:36Z | - |
| dc.date.available | 2009-07-25 | |
| dc.date.copyright | 2007-07-25 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-20 | |
| dc.identifier.citation | References
[1] M. Panniccia, and S. Koehl. “The Silicon Solution,” IEEE Spectrum 1915, 6-9 (2005). [2] D. K. Mynbaev, and L. L. Scheiner, Fiber-Optic Communications Technology, Prentice Hall, New York, 2001. [3] F. Romanato, D. Cojoc, E. D. Fabrizio, M. Galli, and D. Bajoni, “X-ray and electron-beam lithography of three-dimensional array structures for photonics”, J. Vac. Sci. Technol. B21, 2912–2917 (2003). [4] L. Pavesi, and D. J. Lockwood, Silicon Photonics, Springer, Berlin, 2004. [5] E. W. Van Stryland, and Michael Bass, Fiber Optics Handbook: Fiber, Devices, and Systems for Optical Communications, McGraw-Hill, New York, 2002. [6] T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt. 38, 6845–6848 (1999). [7] A. Ishikura, Y. Kato, and M. Miyauchi, “Taper splice method for single-mode fibers,” Appl. Opt. 25, 3460–3465 (1986). [8] K. Morishita and D. Yamamoto, “Fused fiber couplers wavelength-flattened by arc discharge”, in Proc. IEEE/LEOS Workshop on Fibres and Optical Passive Components (WFOPC), Mondello (Palermo), Italy, pp. 187-191, June 22-24, 2005. [9] Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, “Microstructured optical fiber photonic wires with subwavelength core diameter,” Opt. Express 12, 3209-3217 (2004). [10] G.. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12, 2258-2263 (2004). [11] J. E. Shelby, Introduction to Glass Science and Technology, Royal Society of Chemistry, New York, 1997. [12] K. Lee, D. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. Kimerling, 'Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,' Appl. Phys. Lett. 77, 1617-1619 (2000). [13] L. Tong, R. R.Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816-819 (2003). [14] L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16, 1445-1448 (2005). [15] L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14, 82-87 (2006). [16] J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13, 2135-2140 (2005). [17] X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Applied Physics Letters 90, 233501 (2007). [18] X. Jiang, Y. Chen, G. Vienne, and L. Tong, “All-fiber add–drop filters based on microfiber knot resonators,” Optics Letters 32, 1710-1712 (2007). [19] M. A. Matovich, and J. R. A. Pearson, “Spinning a molten threadline-Steady state isothermal viscous flows,” Ind. Eng. Chem. Fund. 8, 512–520 (1969). [20] J. R. A. Pearson, and M. A. Matovich, “Spinning a molten threadline-Stability,” Ind. Eng. Chem. Fund. 8, 605–609 (1969). [21] Y. T. Shah, and J. R. A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fund. 11, 145–149 (1972). [22] F. T. Geyling and G. M. Homsy, “Extensional instabilities of the glass fiber drawing process,” Glass Technol. 21, 95–102 (1980). [23] F. T. Geyling, “Basic fluid dynamic considerations in the drawing of optical fibers,” Bell Syst. Tech. J. 55, 1011–1056 (1976). [24] J. N. Dewynne, P. D. Howell, and P. Wilmott, “Slender viscous fibers with inertia and gravity,” Q. J. Mech. Appl. Math. 47, 541–555 (1994). [25] V. N. Vasilijev, G. N. Dulnev, and V. D. Naumchic, “The Flow of Highly Viscous Liquid. with a Free Surface,” Glass Technol. 30, 83–90 (1989). [26] U. C. Paek, C. M. Schroeder, and C. R. Kurkjian, “Determination of the. viscosity of high silica glasses during fiber drawing,” Glass Technol. 29, 263–266 (1988). [27] S. Roy Choudhury, and Y. Jaluria, “Practical aspects in the drawing of an optical fiber,” J. Mater. Res. 13, 483–493 (1998). [28] A. W. Snyder, J. D. Love, Optical waveguide theory, Chapman and Hall, New York, 1983. [29] A. Ghatak, K. Thyagarajan, Introduction to fiber optics, Cambridge University Press, Cambridge, 1998. [30] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004). [31] A. W. Snyder, and J. D. Love, Optical waveguide theory, Chapman and Hall, New York, 1983. [32] G.E. Keiser, “A review of WDM technology and applications,” Opt. Fiber Tech. 5, 3–39 (1999). [33] Dietrich Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York, 1991. [34] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” Opt. Lett. 16, 624-626 (1991). [35] A. Yariv, “Coupled-mode theory for guided wave optics,” IEEE. J. Quantum Electron. QE-9, 919-933 (1973). [36] S. W. Yang, and H. C. Chang, “Numerical modeling of weakly fused fiber-optic polarization beamsplitters—part I: accurate calculation of coupling coefficients and form birefringence,” IEEE J. Lightwave Technol. 16, 685-690 (1998). [37] A.L. Yarin, P. Gospodinov, O. Gottieb, and M. D. Graham, “Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius,” Phys. Fluids 11, 3201-3208 (1999). [38] A. L. Yarin, P. Gospodinov, and V. I. Roussinov, “Stability loss and sensitivity in hollow fiber drawing,” Phys. Fluids 6, 1454-1463 (1994). [39] S. A. K, “Measurement of wire diameter by optical diffraction,” Optics & Laser Tech. 36, 63-67 (2004). [40] M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightw. Technol. 15, 490–497 (1997). [41] P. Kim. J. H. Kim, M. S. Jeong, and S. Jeong, “Efficient electrochemical etching method to fabricate sharp metallic tips for scanning probe microscopes,” Rev. Sci. Instrum. 77, 103706 (2006). [42] L. Tong, and E. Mazur, “Subwavelength-diameter silica wires for microscale optical components,” SPIE Photonics West 2005, 2005, San Jose (USA). (Invited talk) [43] Israelachvili J., Intermolecular & Surface Forces, 2nd edition, Academic Press, Orlando, 1992. [44] K. Sato, M. Shikida, T. Yamashiro, M. Tsunekawa, and S. Ito, “Roughness of single-crystal silicon surface etched by KOH water solution,” Sensors and Actuators 73, 122-130 (1999). [45] J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, and F. Gonthier, 'Tapered single-mode fibres and devices: Part 1. Adiabaticity criteria,' IEE Proc. Pt.J: Optoelectronics 138, 343-354 (1991). [46] T. A. Birks, and Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432-438 (1992). [47] M. J. Matthewson, C. R. Kurkjian and S. T. Gulati, “Strength measurement of optical fibers by bending,” J. Am. Ceram. Soc. 69, 815-821 (1986). [48] L. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5, 259-262 (2005). [49] K. Huang, S. Yang, and L. Tong, ' Modeling of evanescent coupling between two parallel optical nanowires,' Appl. Opt. 46, 1429-1434 (2007). [50] D. Xavier, M. Lilian, B. Jacques, “Influence of the Fiber Index Profile on Vectorial Fiber Modes and Application to Tapered Fiber Devices,” IEEE J. Lightwave Technol. 23, 1874-1880 (2005). [51] G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, F. Jiménez, and. J. Mateo, “Analysis of intrinsic coupling loss in multi-step index optical fibres,' Opt. Express 13, 3283-3295 (2005). [52] H. F. Knapp, A. Tami, M. Brunner, and A. Stemmer, “Hydrophobic Surface Coatings on Tools used for Handling of Micro-particles,” Proc. 4th Conf. on Motion and Vibration Control, 1998, pp. 1151-1156. [53] 黃崇岳, “結合類神經網路於基因演算法在光學元件的應用,” 國立台灣大學光電工程學研究所碩士論文, 2007. [54] A. Costa, and G. Macedonio, “Viscous heating effects in fluids with temperature-dependent. viscosity: triggering of secondary flows,” J. Fluid Mech. 540, 21–38 (2005). [55] J. W. Jonathan, and H. Huang, “Extensional flows with viscous heating,” Journal of Fluid Mechanics 571, 359-370 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29565 | - |
| dc.description.abstract | 當半導體元件愈來愈小時,要實現微小化的光通訊系統就愈形重要。其中,微細化波導結構更是一項關鍵且困難的技術。在本文中,我們改良傳統的抽絲塔,在一定的條件下,可以得到幾微米或幾百奈米等級的微奈米光波導線。此微奈米波導線有極佳的均勻性、幾十公分非常長的長度,可利用製作出來的鎢針以凡得瓦爾力適當地操控。當微奈米波導線與錐形光纖尖端因凡得瓦爾力貼附在一起,光波便可以漸減波的方式耦合進入波導線中,並且有著低於1.0dB/mm的損耗。另外,我們發現在空氣中可成功地利用紫外光膠對微奈米波導線與錐形光纖接點進行接合,利於後續封裝製程。同時配合光波導模擬軟體成功開發出適用於980/1550nm光波的微小分波多工器,其分波比率可達7.85。 | zh_TW |
| dc.description.abstract | Minimizing the waveguide is very important in optical communications as the semiconductor components become smaller and smaller, but the fabrication of low-loss optical waveguides with sub-wavelength diameters remains challenging. In this work, we utilized an improved drawing tower to obtain the silica micro/nano optical wires (MNOWs) with several micrometers or several hundred micrometers. The MNOWs had extremely good diameter uniformity with long length up to tens of centimeters, and they were properly handled with a tungsten needle. The tip of a fiber taper could be attached to a guiding silica wire because of van der Waals attraction between the two, and the power was launched into these wires by evanescent wave. Also, the wires had an average optical loss of less than 1.0dB/mm. Furthermore, we successfully assembled the connection between a fiber taper and an MNOW by UV glue in air to simplify the package process. We used the waveguide simulation software to design the micro wavelength division multiplexer (MWDM) suitable for 980/1550nm light wave, and the MWDM had a high wavelength separation ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:10:36Z (GMT). No. of bitstreams: 1 ntu-96-R94941082-1.pdf: 1563875 bytes, checksum: bfb460758a59422c1e23baaa9cfd6fd4 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Acknowledgements......................................I
Abstract (Chi).......................................II Abstract (Eng)......................................III Lists................................................IV List of Tables........................................V List of Figures......................................VI Contents Chapter 1 Introduction 1.1 Motivation.................................1-1 1.2 Literature Review..........................1-2 1.3 Organization of The Thesis.................1-6 Chapter 2 Fabrication and Optical Theories of MNOW 2.1 Overview...................................2-1 2.2 Fabrication Theory of MNOW.................2-1 2.3 Optical Theory of MNOW.....................2-4 2.3.1 Basic Model of MNOW........................2-4 2.3.2 Optical Characteristics of MNOW............2-9 2.3.3 Cut-Back Method of Transmission Loss of MNOW...............................................2-10 2.4 Optical Coupling and WDM Theory...........2-11 2.4.1 Optical Coupling Theory...................2-12 2.4.2 WDM Theory................................2-13 2.5 Summary...................................2-14 Chapter 3 Fabrication of MNOW and Fiber Tapers 3.1 Overview...................................3-1 3.2 Fabrication of MNOW........................3-1 3.2.1 Experimental Setup.........................3-2 3.2.2 Wire-Drawing Process.......................3-7 3.2.3 Measurement of MNOW........................3-9 3.3 Manipulation of MNOW......................3-16 3.4 Fabrication of Fiber Tapers...............3-24 3.5 Summary...................................3-29 Chapter 4 Optical Characterization on MNOW and Fiber Tapers 4.1 Overview...................................4-1 4.2 Optical Measurement Setup..................4-1 4.3 Optical Characteristics of MNOW............4-5 4.4 Optical Characteristics of Fiber Tapers...4-11 4.5 Package Method between MNOW and Fiber Tapers.............................................4-20 4.6 Optical Characteristics of a Micro WDM....4-27 4.6.1 Design Method.............................4-27 4.6.2 Micro WDM.................................4-31 4.7 Summary...................................4-36 Chapter 5 Conclusion and Future Work 5.1 Conclusion.................................5-1 5.2 Future Work................................5-2 References............................................R | |
| dc.language.iso | en | |
| dc.subject | 凡得瓦爾力 | zh_TW |
| dc.subject | 漸減波 | zh_TW |
| dc.subject | 抽絲塔 | zh_TW |
| dc.subject | 微小分波多工器 | zh_TW |
| dc.subject | 微奈米光學波導線 | zh_TW |
| dc.subject | van der Waals attraction | en |
| dc.subject | evanescent wave | en |
| dc.subject | micro wavelength division multiplexer | en |
| dc.subject | drawing tower | en |
| dc.subject | micro/nano optical wire | en |
| dc.title | 應用改良式抽絲法實現微小分波多工器之開發及分析 | zh_TW |
| dc.title | Development and Analysis of Micro Wavelength-Division Multiplexer with Improved Fiber-Drawing Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍(Sheng-Lung Huang),林惠娟(Huey-Jiuan Lin) | |
| dc.subject.keyword | 抽絲塔,微奈米光學波導線,凡得瓦爾力,漸減波,微小分波多工器, | zh_TW |
| dc.subject.keyword | drawing tower,micro/nano optical wire,van der Waals attraction,evanescent wave,micro wavelength division multiplexer, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
