Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃火鍊(Fore-Lien Huang)
dc.contributor.authorHsu-Ping Huangen
dc.contributor.author黃旭平zh_TW
dc.date.accessioned2021-06-13T01:08:47Z-
dc.date.available2007-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-19
dc.identifier.citationAutieri, M. V., and Carbone, C. J. (1999). 14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells. DNA Cell Biol 18, 555-564.
Bachar-Dahan, L., Goltzmann, J., Yaniv, A., and Gazit, A. (2006). Engrailed-1 negatively regulates beta-catenin transcriptional activity by destabilizing beta-catenin via a glycogen synthase kinase-3beta-independent pathway. Mol Biol Cell 17, 2572-2580.
Barrallo, A., Gonzalez-Sarmiento, R., Garcia-Isidoro, M., Cidad, P., Porteros, A., and Rodriguez, R. E. (1999). Differential brain expression of a new beta-actin gene from zebrafish (Danio rerio). Eur J Neurosci 11, 369-372.
Basu, S., Totty, N. F., Irwin, M. S., Sudol, M., and Downward, J. (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11, 11-23.
Benton, R., Palacios, I. M., and St Johnston, D. (2002). Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 3, 659-671.
Besser, J., Bagowski, C. P., Salas-Vidal, E., van Hemert, M. J., Bussmann, J., and Spaink, H. P. (2007). Expression analysis of the family of 14-3-3 proteins in zebrafish development. Gene Expr Patterns 7, 511-520.
Braselmann, S., and McCormick, F. (1995). Bcr and Raf form a complex in vivo via 14-3-3 proteins. EMBO J 14, 4839-4848.
Bridges, D., and Moorhead, G. B. (2005). 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005, re10.
Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Camoni, L., Visconti, S., Marra, M., and Aducci, P. (2001). Adenosine 5'-monophosphate inhibits the association of 14-3-3 proteins with the plant plasma membrane H(+)-ATPase. J Biol Chem 276, 31709-31712.
Chaudhri, M., Scarabel, M., and Aitken, A. (2003). Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun 300, 679-685.
Cheng, K., Li, Z., Fu, W. Y., Wang, J. H., Fu, A. K., and Ip, N. Y. (2002). Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J Biol Chem 277, 31988-31993.
Chiang, S. H., Hwang, J., Legendre, M., Zhang, M., Kimura, A., and Saltiel, A. R. (2003). TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J 22, 2679-2691.
Clokie, S. J., Cheung, K. Y., Mackie, S., Marquez, R., Peden, A. H., and Aitken, A. (2005). BCR kinase phosphorylates 14-3-3 Tau on residue 233. FEBS J 272, 3767-3776.
Cohen, P. T. (2002). Protein phosphatase 1--targeted in many directions. J Cell Sci 115, 241-256.
Deckelbaum, R. A., Majithia, A., Booker, T., Henderson, J. E., and Loomis, C. A. (2006). The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development 133, 63-74.
del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687-689.
Denhardt, D. T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318, 729-747.
Dougherty, M. K., and Morrison, D. K. (2004). Unlocking the code of 14-3-3. J Cell Sci 117, 1875-1884.
Eberhardt, M., Salmon, P., von Mach, M. A., Hengstler, J. G., Brulport, M., Linscheid, P., Seboek, D., Oberholzer, J., Barbero, A., Martin, I., et al. (2006). Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets. Biochem Biophys Res Commun 345, 1167-1176.
Eisenmann, K. M., Peng, J., Wallar, B. J., and Alberts, A. S. (2005). Rho GTPase-formin pairs in cytoskeletal remodelling. Novartis Found Symp 269, 206-230.
Fantl, W. J., Muslin, A. J., Kikuchi, A., Martin, J. A., MacNicol, A. M., Gross, R. W., and Williams, L. T. (1994). Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612-614.
Ferl, R. J. (2004). 14-3-3 proteins: regulation of signal-induced events. Physiol Plant 120, 173-178.
Franz, M. R. (1996). Mechano-electrical feedback in ventricular myocardium. Cardiovasc Res 32, 15-24.
Freed, E., Symons, M., Macdonald, S. G., McCormick, F., and Ruggieri, R. (1994). Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 1713-1716.
Gelperin, D., Weigle, J., Nelson, K., Roseboom, P., Irie, K., Matsumoto, K., and Lemmon, S. (1995). 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92, 11539-11543.
Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., and Ben-Tal, N. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163-164.
Graeser, R., Gannon, J., Poon, R. Y., Dubois, T., Aitken, A., and Hunt, T. (2002). Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J Cell Sci 115, 3479-3490.
Graves, P. R., Lovly, C. M., Uy, G. L., and Piwnica-Worms, H. (2001). Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20, 1839-1851.
Hausser, A., Storz, P., Link, G., Stoll, H., Liu, Y. C., Altman, A., Pfizenmaier, K., and Johannes, F. J. (1999). Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins. J Biol Chem 274, 9258-9264.
Henriksson, M. L., Francis, M. S., Peden, A., Aili, M., Stefansson, K., Palmer, R., Aitken, A., and Hallberg, B. (2002). A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem 269, 4921-4929.
Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1, 3-11.
Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., and Takahashi, Y. (1988). Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A 85, 7084-7088.
Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T., and Fujisawa, H. (1987). Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent protein kinase II. FEBS Lett 219, 79-82.
Ishibashi, T., Ogawa, S., Hashiguchi, Y., Inoue, Y., Udo, H., Ohzono, H., Kato, A., Minakami, R., and Sugiyama, H. (2005). A novel protein specifically interacting with Homer2 regulates ubiquitin-proteasome systems. J Biochem (Tokyo) 137, 617-623.
Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417-439.
Jaumot, M., and Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20, 3949-3958.
Kamkin, A., Kiseleva, I., Isenberg, G., Wagner, K. D., Gunther, J., Theres, H., and Scholz, H. (2003). Cardiac fibroblasts and the mechano-electric feedback mechanism in healthy and diseased hearts. Prog Biophys Mol Biol 82, 111-120.
Kelberman, D., Rizzoti, K., Avilion, A., Bitner-Glindzicz, M., Cianfarani, S., Collins, J., Chong, W. K., Kirk, J. M., Achermann, J. C., Ross, R., et al. (2006). Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Invest 116, 2442-2455.
Kikuchi, K., Ishii, N., Asao, H., and Sugamura, K. (2003). Identification of AMSH-LP containing a Jab1/MPN domain metalloenzyme motif. Biochem Biophys Res Commun 306, 637-643.
Kim, Y. H., Kim, Y. S., Kang, S. S., Noh, H. S., Kim, H. J., Cho, G. J., and Choi, W. S. (2005). Expression of 14-3-3 zeta and interaction with protein kinase C in the rat retina in early diabetes. Diabetologia 48, 1411-1415.
Kuncewicz, T., Sheta, E. A., Goldknopf, I. L., and Kone, B. C. (2003). Proteomic analysis of S-nitrosylated proteins in mesangial cells. Mol Cell Proteomics 2, 156-163.
Lab, M. J. (1982). Contraction-excitation feedback in myocardium. Physiological basis and clinical relevance. Circ Res 50, 757-766.
Lab, M. J. (1996). Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc Res 32, 3-14.
Lawrence, H. J., Sauvageau, G., Humphries, R. K., and Largman, C. (1996). The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14, 281-291.
Liu, M. Y., Cai, S., Espejo, A., Bedford, M. T., and Walker, C. L. (2002). 14-3-3 interacts with the tumor suppressor tuberin at Akt phosphorylation site(s). Cancer Res 62, 6475-6480.
Lizcano, J. M., Morrice, N., and Cohen, P. (2000). Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J 349, 547-557.
Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172-175.
Margolis, S. S., Perry, J. A., Forester, C. M., Nutt, L. K., Guo, Y., Jardim, M. J., Thomenius, M. J., Freel, C. D., Darbandi, R., Ahn, J. H., et al. (2006). Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127, 759-773.
Masters, S. C., Pederson, K. J., Zhang, L., Barbieri, J. T., and Fu, H. (1999). Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38, 5216-5221.
Megidish, T., Cooper, J., Zhang, L., Fu, H., and Hakomori, S. (1998). A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein. J Biol Chem 273, 21834-21845.
Meller, N., Liu, Y. C., Collins, T. L., Bonnefoy-Berard, N., Baier, G., Isakov, N., and Altman, A. (1996). Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Mol Cell Biol 16, 5782-5791.
Morii, N., Kumagai, N., Nur, E. K. M. S., Narumiya, S., and Maruta, H. (1993). rho GAP of 28 kDa (GAP2), but not of 190 kDa (p190), requires Asp65 and Asp67 of rho GTPase for its activation. J Biol Chem 268, 27160-27163.
Morton, D. G., Shakes, D. C., Nugent, S., Dichoso, D., Wang, W., Golden, A., and Kemphues, K. J. (2002). The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 241, 47-58.
Muller, J., Cacace, A. M., Lyons, W. E., McGill, C. B., and Morrison, D. K. (2000). Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol 20, 5529-5539.
Muslin, A. J., Tanner, J. W., Allen, P. M., and Shaw, A. S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897.
Nakamura, M., Tanaka, N., Kitamura, N., and Komada, M. (2006). Clathrin anchors deubiquitinating enzymes, AMSH and AMSH-like protein, on early endosomes. Genes Cells 11, 593-606.
Nufer, O., and Hauri, H. P. (2003). ER export: call 14-3-3. Curr Biol 13, R391-393.
O'Kelly, I., Butler, M. H., Zilberberg, N., and Goldstein, S. A. (2002). Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell 111, 577-588.
Obsil, T., Ghirlando, R., Anderson, D. E., Hickman, A. B., and Dyda, F. (2003). Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264-15272.
Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S., and Dyda, F. (2001). Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257-267.
Obsilova, V., Herman, P., Vecer, J., Sulc, M., Teisinger, J., and Obsil, T. (2004). 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem 279, 4531-4540.
Oriente, F., Andreozzi, F., Romano, C., Perruolo, G., Perfetti, A., Fiory, F., Miele, C., Beguinot, F., and Formisano, P. (2005). Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon. J Biol Chem 280, 40642-40649.
Pastorino, J. G., Tafani, M., and Farber, J. L. (1999). Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 274, 19411-19416.
Pearson, R. B., and Kemp, B. E. (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200, 62-81.
Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21, 921-926.
Petosa, C., Masters, S. C., Bankston, L. A., Pohl, J., Wang, B., Fu, H., and Liddington, R. C. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273, 16305-16310.
Powell, D. W., Rane, M. J., Chen, Q., Singh, S., and McLeish, K. R. (2002). Identification of 14-3-3zeta as a protein kinase B/Akt substrate. J Biol Chem 277, 21639-21642.
Pozuelo Rubio, M., Campbell, D. G., Morrice, N. A., and Mackintosh, C. (2005). Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428. Biochem J 392, 163-172.
Preisinger, C., Short, B., De Corte, V., Bruyneel, E., Haas, A., Kopajtich, R., Gettemans, J., and Barr, F. A. (2004). YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 164, 1009-1020.
Prezeau, L., Richman, J. G., Edwards, S. W., and Limbird, L. E. (1999). The zeta isoform of 14-3-3 proteins interacts with the third intracellular loop of different alpha2-adrenergic receptor subtypes. J Biol Chem 274, 13462-13469.
Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J., Gamblin, S. J., and Yaffe, M. B. (1999). Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4, 153-166.
Sachs, F., and Morris, C. E. (1998). Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132, 1-77.
Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S. J. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497-1501.
Santoro, M. M., Gaudino, G., and Villa-Moruzzi, E. (2003). Protein phosphatase 1 binds to phospho-Ser-1394 of the macrophage-stimulating protein receptor. Biochem J 376, 587-594.
Schagger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368-379.
Sekimoto, T., Fukumoto, M., and Yoneda, Y. (2004). 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J 23, 1934-1942.
Slavov, D., and Gardiner, K. (2002). Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns. Gene 299, 83-94.
Sonnier, L., Le Pen, G., Hartmann, A., Bizot, J. C., Trovero, F., Krebs, M. O., and Prochiantz, A. (2007). Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1. J Neurosci 27, 1063-1071.
Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., et al. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957-968.
Sugawara, K., Suzuki, N. N., Fujioka, Y., Mizushima, N., Ohsumi, Y., and Inagaki, F. (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem 280, 40058-40065.
Tanida, I., Sou, Y. S., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2006). Atg8L/Apg8L is the fourth mammalian modifier of mammalian Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS J 273, 2553-2562.
Tien, A. C., Hsei, H. Y., and Chien, C. T. (1999). Dynamic expression and cellular localization of the drosophila 14-3-3epsilon during embryonic development. Mech Dev 81, 209-212.
Toker, A., Ellis, C. A., Sellers, L. A., and Aitken, A. (1990). Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur J Biochem 191, 421-429.
Toyo-oka, K., Shionoya, A., Gambello, M. J., Cardoso, C., Leventer, R., Ward, H. L., Ayala, R., Tsai, L. H., Dobyns, W., Ledbetter, D., et al. (2003). 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 34, 274-285.
Tsuruta, F., Sunayama, J., Mori, Y., Hattori, S., Shimizu, S., Tsujimoto, Y., Yoshioka, K., Masuyama, N., and Gotoh, Y. (2004). JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23, 1889-1899.
Tzivion, G., Luo, Z., and Avruch, J. (1998). A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394, 88-92.
Tzivion, G., Luo, Z. J., and Avruch, J. (2000). Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J Biol Chem 275, 29772-29778.
Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Dijk, M. C., and Van Blitterswijk, J. (2000). 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345, 297-306.
van Hemert, M. J., Steensma, H. Y., and van Heusden, G. P. (2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936-946.
van Heusden, G. P. (2005). 14-3-3 proteins: regulators of numerous eukaryotic proteins. IUBMB Life 57, 623-629.
van Heusden, G. P., Griffiths, D. J., Ford, J. C., Chin, A. W. T. F., Schrader, P. A., Carr, A. M., and Steensma, H. Y. (1995). The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem 229, 45-53.
Vandermoere, F., El Yazidi-Belkoura, I., Demont, Y., Slomianny, C., Antol, J., Lemoine, J., and Hondermarck, H. (2007). Proteomics exploration reveals that actin is a signaling target of the kinase Akt. Mol Cell Proteomics 6, 114-124.
Wang, B., Yang, H., Liu, Y. C., Jelinek, T., Zhang, L., Ruoslahti, E., and Fu, H. (1999). Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38, 12499-12504.
Wang, D. Z., Nur, E. K. M. S., Tikoo, A., Montague, W., and Maruta, H. (1997). The GTPase and Rho GAP domains of p190, a tumor suppressor protein that binds the M(r) 120,000 Ras GAP, independently function as anti-Ras tumor suppressors. Cancer Res 57, 2478-2484.
Woodcock, J. M., Murphy, J., Stomski, F. C., Berndt, M. C., and Lopez, A. F. (2003). The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface. J Biol Chem 278, 36323-36327.
Xiao, B., Smerdon, S. J., Jones, D. H., Dodson, G. G., Soneji, Y., Aitken, A., and Gamblin, S. J. (1995). Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376, 188-191.
Yaffe, M. B. (2002). How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53-57.
Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H., Gamblin, S. J., Smerdon, S. J., and Cantley, L. C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971.
Yang, J., Winkler, K., Yoshida, M., and Kornbluth, S. (1999). Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. EMBO J 18, 2174-2183.
Yang, X., Lee, W. H., Sobott, F., Papagrigoriou, E., Robinson, C. V., Grossmann, J. G., Sundstrom, M., Doyle, D. A., and Elkins, J. M. (2006). Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci U S A 103, 17237-17242.
Yuan, H., Michelsen, K., and Schwappach, B. (2003). 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 13, 638-646.
Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619-628.
Zhai, H., Nakade, K., Oda, M., Mitsumoto, Y., Akagi, M., Sakurai, J., and Fukuyama, Y. (2005). Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (ERK1/2). Eur J Pharmacol 516, 112-117.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29503-
dc.description.abstract14-3-3蛋白家族在真核生物中具有高度保守性,為大小約30kDa的酸性蛋白質。目前研究已知有兩百種以上的磷酸化蛋白能與14-3-3家族蛋白結合。這些蛋白幾乎參與細胞內所有的活動,如細胞週期、訊號傳遞、細胞凋亡等。斑馬魚已知的14-3-3家族共有十一種,實驗室已成功選殖其中九種,論文中將探討斑馬魚14-3-3家族蛋白的生化特性,首先利用大腸桿菌系統大量表現並純化帶有GST的斑馬魚14-3-3家族融合蛋白和帶有六個His的斑馬魚14-3-3家族融合蛋白。將已純化帶有六個His的14-3-3-β2、ζ1、ζ2、ε1及η蛋白,注射至兔子體內,以產生多株抗體,並分析抗體特性。根據實驗室先前實驗結果,在斑馬魚胚胎時期,過量表現14-3-3-ζ1於心臟,可觀察到斑馬魚心臟出現心律不整或心跳減緩的現象。因此利用與斑馬魚相似性很高的鯉魚之心臟萃取物,與斑馬魚14-3-3-ζ1進行GST pull down,並使用液相層析與串聯質譜儀比對斑馬魚蛋白資料庫進行分析,辨認出共十四種蛋白,其中包含β-actin-1。進一步驗證β-actin-1與14-3-3-ζ1的結合作用,利用GST pull down實驗發現在試管中β-actin-1與14-3-3-ζ1確實有結合反應。而將β-actin-1與14-3-3-ζ1轉染至COS-1細胞中,進行共同免疫沉澱,兩蛋白的結合反應依然存在。證實了斑馬魚β-actin-1與14-3-3-ζ1在試管中與細胞中皆有交互作用。我們利用相同的方法,驗證九種14-3-3家族蛋白的成員與β-actin-1的交互作用,透過GST pull down可觀察到在試管中,九種14-3-3家族蛋白皆與β-actin-1產生結合作用;而在細胞中,僅能發現ζ1、ζ2以及η這三個14-3-3家族成員,與β-actin-1有較強的結合反應。zh_TW
dc.description.abstractThe 14-3-3 proteins form a family of highly conserved acidic proteins in all eukaryotic cells with a subunit mass of approximately 30 kDa. 14-3-3 proteins were capable of interacting with more than 200 different phosphorylated proteins. The binding partners are involved in almost every cellular process, like cell cycle control, apoptosis and signal transduction. The zebrafish 14-3-3 gene family consists of 11 distinct 14-3-3 genes. Previously, our laboratory had cloned 9 members of the zebrafish 14-3-3 gene family. In our study, we have expressed and purified GST fusion proteins and His-tagged fusion proteins of the 9 zebrafish 14-3-3 protein from E.coli. His-tagged 14-3-3 recombinant proteins were then injected into rabbit to obtain polyclonal antibodies against 14-3-3 β2, ζ1 ,ζ2 ,ε1 and η; these antibodies were also characterized. Proteins pull downed by GST fusion 14-3-3-ζ1 in the carp’s heart extracts were analyzed to identify potential interacting partners of 14-3-3-ζ1. 14 proteins, including β-actin-1, were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the 14-3-3-ζ1 GST pull downed proteins. The interaction between 14-3-3-ζ1 and β-actin-1 was further confirmed by GST pull down and co-immunoprecipitation in COS-1 cells. Our results indicate that β-actin-1 is a binding partner of 14-3-3-ζ1 both in vitro and COS-1 cells. Furthermore, the interaction between other 14-3-3 isoforms and β-actin-1 were also analyzed. We demonstrated that all 14-3-3 family proteins are able to bind β-actin-1in the GST pull down assay in vitro. However, only three 14-3-3 isoforms including ζ1, ζ2 and η have the ability to interact with β-actin-1 in COS-1 cells.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:08:47Z (GMT). No. of bitstreams: 1
ntu-96-R94b43021-1.pdf: 1755915 bytes, checksum: ea98245aad6c6c9cad6056990998bc2d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
中文摘要…………………………………………………………...…....................... i
英文摘要 (Abstract)…………………………………………….…......................... ii
目錄…………………………………………………………...........…....................... iii
圖表目錄…………………………………………………………………………….. iv
壹、序言…………………………………………………………….......................... 1
一、14-3-3的基本介紹…………………………………………………………. 1
二、14-3-3的蛋白質結構………………………………………………………. 2
三、14-3-3與受質的結合………………………………………………………. 3
四、14-3-3的作用機制…………………………………………………………. 4
五、14-3-3與受質結合的調控……………………………………………….… 5
六、14-3-3自身的調控……………………………………………….…………. 9
貳、實驗目標………………….................................................................................. 11
参、實驗材料及方法……………………………………………………………….. 13
Ⅰ 實驗材料……….………………………………………………….....……… 13
Ⅱ 實驗方法…………………………………………………………………….. 13
一、表達及純化14-3-3家族融合蛋白……………………………………...… 14
二、利用西方點墨法方西14-3-3蛋白家族之抗體…………………………. 18
三、利用GST pull down研究14-3-3-zeta1與鯉魚的心臟萃取物的交互作用蛋白………………………………………………………………….…....
19
四、選殖斑馬魚β-actin-1基因……….……………………………….……… 20
五、GST pull down及共同免疫沉澱法驗證斑馬魚14-3-3家族蛋白與β-actin-1的結合.............................................................................................. 22
肆、實驗結果…………………………………………………….............................. 26
一、載體的構築……………………………………………..…………….……… 26
二、利用大腸桿菌系統表現及純化斑馬魚14-3-3 家族GST重組蛋白……….. 26
三、利用大腸桿菌系統表現帶有六個His的斑馬魚14-3-3 家族重組蛋白…. 27
四、以西方點墨法分析斑馬魚14-3-3多株抗體的特性………………………. 27
五、以GST pull down篩選鯉魚心臟的萃取物中與斑馬魚14-3-3-zeta1的GST 融合蛋白有交互作用的蛋白質並利用液相層析與串聯質譜儀分析…………………………………………………………………………….. 28
六、利用GST pull down分析斑馬魚14-3-3-zeta1與β-actin-1的交互作用.… 28
七、利用共同免疫沉澱技術分析斑馬魚14-3-3-zeta1與β-actin-1在COS-1細胞中的交互作用………………………………………………………….. 29
伍、討論…………………………………………………………………………….. 31
陸、參考文獻……………………………………………………………………….. 36

圖表目錄
表一、利用西方點墨法分析斑馬魚14-3-3多株抗體的特性…………………. 46
表二、液相層析與串聯質譜儀比對斑馬魚蛋白質資料庫分析結果…………. 47
圖一、針對實驗所構築之載體……………………………………………........ 48
圖二、純化大腸桿菌系統表現之斑馬魚14-3-3家族 GST重組蛋白……….. 49
圖三、純化大腸桿菌系統表現之帶有六個His的斑馬魚14-3-3 family重組蛋白…………………………………………………………….………... 51
圖四、以西方點墨法分析斑馬魚14-3-3多株抗體的特性............................... 52
圖五、篩選鯉魚心臟的萃取物中與斑馬魚14-3-3-zeta1有交互作用的蛋白質................................................................................................................ 53
圖六、斑馬魚14-3-3在in vitro與β-actin-1的交互作用………….………… 54
圖七、斑馬魚14-3-3與β-actin-1在COS-1細胞中的交互作用…………….. 55
圖八、將斑馬魚14-3-3家族轉染至COS-1細胞….......................................... 57
圖九、分析人類14-3-3-zeta與本實驗室選殖的九種14-3-3家族蛋白質序列………………………………………………………………………… 58
圖十、比對斑馬魚14-3-3-zeta1、zeta2之蛋白序列差異………………......... 59
附錄一、14-3-3蛋白質結構……………………………………………............ 60
附錄二、14-3-3蛋白的作用機制………………………………………............. 61
附錄三、選殖九種斑馬魚14-3-3蛋白家族……………………………………. 62
附錄四、於斑馬魚胚胎心臟過量表現14-3-3造成心跳減緩………………… 63
附錄五、14-3-3家族演化樹…………………………………………….............. 64
附錄六、斑馬魚14-3-3家族共十一種家族成員的基因結構…………............ 65
dc.language.isozh-TW
dc.title斑馬魚14-3-3蛋白家族的純化與性質鑑定zh_TW
dc.titleExpression, purification and characterization of 14-3-3 proteins from zebrafishen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃銓珍,李明亭
dc.subject.keyword14-3-3,zh_TW
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved