Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29498
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor何弘能(Hong-Nerng Ho)
dc.contributor.authorYu-Jung Wuen
dc.contributor.author吳禹蓉zh_TW
dc.date.accessioned2021-06-13T01:08:40Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citationAluvihare, V.R., Kallikourdis, M., and Betz, A.G. (2004). Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology 5, 266-271.
Arici, A., Seli, E., Senturk, L.M., Gutierrez, L.S., Oral, E., and Taylor, H.S. (1998). Interleukin-8 in the human endometrium. The Journal of Clinical Endocrinology and Metabolism 83, 1783-1787.
Billingham, R.E., Brent, L., and Medawar, P.B. (1953). Actively acquired tolerance of foreign cells. Nature 172, 603-606.
Chang, M.D., Pollard, J.W., Khalili, H., Goyert, S.M., and Diamond, B. (1993). Mouse placental macrophages have a decreased ability to present antigen. Proceedings of the National Academy of Sciences of the United States of America 90, 462-466.
Chatila, T.A., Blaeser, F., Ho, N., Lederman, H.M., Voulgaropoulos, C., Helms, C., and Bowcock, A.M. (2000). JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. The Journal of Clinical Investigation 106, R75-81.
Chen, H.F., Chao, K.H., Shew, J.Y., Yang, Y.S., and Ho, H.N. (2004). Expression of leukemia inhibitory factor and its receptor is not altered in the decidua and chorionic villi of human anembryonic pregnancy. Human Reproduction (Oxford, England) 19, 1647-1654.
Chen, H.F., Lin, C.Y., Chao, K.H., Wu, M.Y., Yang, Y.S., and Ho, H.N. (2002). Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy. The Journal of Clinical Endocrinology and Metabolism 87, 2320-2328.
Dominguez, F., Pellicer, A., and Simon, C. (2003). The chemokine connection: hormonal and embryonic regulation at the human maternal-embryonic interface-a review. Placenta 24 Suppl B, S48-55.
Fontenot, J.D., and Rudensky, A.Y. (2005). A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nature Immunology 6, 331-337.
Goerdt, S., and Orfanos, C.E. (1999). Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10, 137-142.
Grossman, W.J., Verbsky, J.W., Barchet, W., Colonna, M., Atkinson, J.P., and Ley, T.J. (2004). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589-601.
Hill, J.A., Polgar, K., and Anderson, D.J. (1995). T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA 273, 1933-1936.
Ho, H.N., Chao, K.H., Chen, C.K., Yang, Y.S., and Huang, S.C. (1996). Activation status of T and NK cells in the endometrium throughout menstrual cycle and normal and abnormal early pregnancy. Human Immunology 49, 130-136.
Ho, H.N., Chao, K.H., Chen, H.F., Chen, S.U., Wu, M.Y., and Yang, Y.S. (2001). Distribution of Th1 and Th2 cell populations in human peripheral and decidual T cells from normal and anembryonic pregnancies. Fertility and Sterility 76, 797-803.
Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.
Hornung, D., Ryan, I.P., Chao, V.A., Vigne, J.L., Schriock, E.D., and Taylor, R.N. (1997). Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. The Journal of Clinical Endocrinology and Metabolism 82, 1621-1628.
Hunt, J.S., and Pollard, J.W. (1992). Macrophages in the uterus and placenta. Current Topics in Microbiology and Immunology 181, 39-63.
Jones, R.L., Hannan, N.J., Kaitu'u, T.J., Zhang, J., and Salamonsen, L.A. (2004). Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. The Journal of Clinical Endocrinology and Metabolism 89, 6155-6167.
Khattri, R., Cox, T., Yasayko, S.-A., and Ramsdell, F. (2003). An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunology 4, 337-342.
King, A., and Loke, Y.W. (1991). On the nature and function of human uterine granular lymphocytes. Immunology Today 12, 432-435.
Loke, Y.W., and King, A. (1995). Human Implantation. Cell biology and Immunology. Cambridge University Press, Cambridge, UK.
Moreau, P., Paul, P., Rouas-Freiss, N., Kirszenbaum, M., Dausset, J., and Carosella, E.D. (1998). Molecular and immunologic aspects of the nonclassical HLA class I antigen HLA-G: evidence for an important role in the maternal tolerance of the fetal allograft. American Journal of Reproductive Immunology 40, 136-144.
Piccinni, M.-P., Beloni, L., Livi, C., Maggi, E., Scarselli, G., and Romagnani, S. (1998). Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nature Medicine 4, 1020-1024.
Polanczyk, M.J., Hopke, C., Huan, J., Vandenbark, A.A., and Offner, H. (2005). Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. Journal of Neuroimmunology 170, 85-92.
Pollard, J.W., Morgan, C.J., Dello Sbarba, P., Cheers, C., and Stanley, E.R. (1991). Independently arising macrophage mutants dissociate growth factor-regulated survival and proliferation. Proceedings of the National Academy of Sciences of the United States of America 88, 1474-1478.
Raghupathy, R. (1997). Th1-type immunity is incompatible with successful pregnancy. Immunology Today 18, 478-482.
Robb, L., Li, R., Hartley, L., Nandurkar, H.H., Koentgen, F., and Begley, C.G. (1998). Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nature Medicine 4, 303-308.
Saito, S., Sasaki, Y., and Sakai, M. (2005). CD4+CD25high regulatory T cells in human pregnancy. Journal of Reproductive Immunology 65, 111-120.
Sakaguchi, S. (2000). Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455-458.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annual Review of Immunology 22, 531-562.
Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology 6, 345-352.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155, 1151-1164.
Salamonsen, L.A., and Lathbury, L.J. (2000). Endometrial leukocytes and menstruation. Human Reproduction Update 6, 16-27.
Sasaki, Y., Sakai, M., Miyazaki, S., Higuma, S., Shiozaki, A., and Saito, S. (2004). Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Molecular Human Reproduction 10, 347-353.
Scaife, P.J., Bulmer, J.N., Robson, S.C., Innes, B.A., and Searle, R.F. (2006). Effector activity of decidual CD8+ T lymphocytes in early human pregnancy. Biology of Reproduction 75, 562-567.
Siiteri, P.K., and Stites, D.P. (1982). Immunologic and endocrine interrelationships in pregnancy. Biology of Reproduction 26, 1-14.
Somerset, D.A., Zheng, Y., Kilby, M.D., Sansom, D.M., and Drayson, M.T. (2004). Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112, 38-43.
Starkey, P.M., Clover, L.M., and Rees, M.C.P. (1991). Variation during the menstrual cycle of immune cell populations in human endometrium. European Journal of Obstetrics & Gynecology and Reproductive Biology 39, 203-207.
Stewart, C.L., Kaspar, P., Brunet, L.J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S.J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76-79.
Tabibzadeh, S.S., and Satyaswaroop, P.G. (1989). Sex steroid receptors in lymphoid cells of human endometrium. American Journal of Clinical Pathology 91, 656-663.
Vogiagis, D., Marsh, M.M., Fry, R.C., and Salamonsen, L.A. (1996). Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle. The Journal of Endocrinology 148, 95-102.
Wegmann, T.G., Lin, H., Guilbert, L., and Mosmann, T.R. (1993). Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology Today 14, 353-356.
White, H.D., Crassi, K.M., Givan, A.L., Stern, J.E., Gonzalez, J.L., Memoli, V.A., Green, W.R., and Wira, C.R. (1997). CD3+ CD8+ CTL activity within the human female reproductive tract: influence of stage of the menstrual cycle and menopause. Journal of Immunology 158, 3017-3027.
Yeaman, G.R., Collins, J.E., Fanger, M.W., Wira, C.R., and Lydyard, P.M. (2001). CD8+ T cells in human uterine endometrial lymphoid aggregates: evidence for accumulation of cells by trafficking. Immunology 102, 434-440.
Yeaman, G.R., Guyre, P.M., Fanger, M.W., Collins, J.E., White, H.D., Rathbun, W., Orndorff, K.A., Gonzalez, J., Stern, J.E., and Wira, C.R. (1997). Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. Journal of Leukocyte Biology 61, 427-435.
Zenclussen, A.C., Gerlof, K., Zenclussen, M.L., Ritschel, S., Zambon Bertoja, A., Fest, S., Hontsu, S., Ueha, S., Matsushima, K., Leber, J., et al. (2006). Regulatory T cells induce a privileged tolerant microenvironment at the fetal-maternal interface. European Journal of Immunology 36, 82-94
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29498-
dc.description.abstract胎兒的一半基因來自於父親,為了使胎兒在母親體內不被排斥且能夠順利著床、發育,母親子宮環境中的免疫系統必須經過適當的調節。過去研究指出性賀爾蒙具有調節子宮內膜免疫反應的作用,而人類子宮內膜中的免疫細胞的型態也與一般血液循環系統中的免疫細胞有所差異,趨向於發展成TH2的反應。至於主導免疫調控的調節性T細胞(regulatory T cells)與懷孕之相關性,近期也有一些研究被發表,但調節性T細胞在人類懷孕子宮內膜組織中的分佈情形,目前為止並沒有明確的解釋。我們利用免疫染色法,以FOXP3分子做為調節性T細胞的標誌,找出FOXP+調節性T細胞在懷孕子宮內膜中的分佈位置,並且利用軟體定量,發現相較於早期流產的病人,在正常懷孕的狀況下的確有較高比例的FOXP+調節性T細胞存在。此外我們也注意到人類懷孕子宮內膜中有免疫細胞聚集的現象,此種免疫細胞聚集的結構主要是由CD8+ T細胞組成,在細胞聚集的中央部分有少許的B細胞,CD4+ T細胞數量較少且散佈在細胞聚集的內外,子宮NK細胞有時會包覆在CD8+ T細胞聚集的外圍,而細胞聚集的最邊緣部分則是散佈的CD14+ 細胞。正常懷孕的狀況下會有較大且結構較為完整的免疫細胞聚集。我們也發現,FOXP3+調節性T細胞較易出現在此種免疫細胞聚集的周圍,且FOXP3+調節性T細胞會與CD8+ T細胞有直接接觸,合併針對Granzyme B的染色結果,我們也發現Granzyme B 似乎參與在其中,推測與免疫調節相關。在細胞聚集之中,可發現與CD8+ T細胞功能相關的Granzyme A與Perforin的表現,但是細胞聚集之外的組織部分,正常懷孕相對於早期流產的組別,有明顯較少的Granzyme A與Perforin可被偵測到,並且在這些細胞聚集外的區域也可以發現Granzyme B以及TGF-β的表現。因此,在正常懷孕的狀況下也許是利用此種免疫細胞聚集的機制將活化的CD8+ T細胞限制在特定的區域之內,並且在懷孕子宮內膜中其他部分具有較嚴謹的免疫調控系統,讓發炎反應可以不被大量引發,使胎兒能夠順利成功地著床發育。zh_TW
dc.description.abstractIn order to have successful implantation and development of the fetus, the maternal immune system must be modified by several appropriate regulations in mammal. Besides the immunoregulation of sexual hormones, the immune cells in human decidua (endometrial tissue) during pregnancy have some different characteristics from those in other human tissues. CD4+CD25+ regulatory T cell (Treg) which is a subset of CD4+ regulatory T cells plays a critical role in the modulation of immune response. FOXP3 is a key molecule predominantly restricted to CD4+CD25+ Treg cells. Recently, some human and mice experiments reported that the population of CD4+CD25+ Treg cells increased during pregnancy and these Treg expressed foxp3 mRNA. However, most of these studies investigated the population of CD4+CD25+ Treg cells by flow cytometry. However, the physiological role of FOXP3+ Treg cells and their interactions with other immune cells in the endometrial microenvironment remains unknown. In order to understand this issue in normal and anembryonic human pregnancies, we used immunostaining method to detect FOXP3+ cells and indicated that the percentage of FOXP3+ cells in CD3+ cells was higher in decidua from normal pregnancies compare to those from anembryonic pregnancies. We also noted that the FOXP3+ cells were close to a special structure, CD8+ T cell-rich lymphoid aggregates, in the decdual tissues. Combined with cell markers, CD8, CD4, CD11b, CD19, CD56, we further evidenced the distribution of FOXP3+ cells and other immune cells in lymphoid aggregates. Our data indicate that the CD8+ T cell-rich lymphoid aggregates contain few B cells in the center whereas CD8+ T cells forms the main structure of the lymphoid aggregates. CD4+ T cells are few and scattered, uNK cells surround the CD8+ T cell-rich lymphoid aggregates and CD11b+ macrophages are outside. We also found that FOXP3+ Tregs were around the lymphoid aggregates and sometimes contact to CD8+ T cells. By Granzyme B staining, we suggested that granzyme B may contribute to the regulation between FOXP3+ Treg and CD8+ T cells. Although CD8+ T cells and uNK cells in lymphoid aggregates can express cytotoxic factors such as Granzyme A and Perforin, the Granzyme A and Perforin expressions of CD8+ cells and NK cells outside the CD8+ T cell-rich lymphoid aggregates was less in normal pregnancies compares to that in anembryonic pregnancies. Additionally, there are larger and well organizing CD8+ T cell-rich lymphoid aggregates in normal pregnancies. We speculate that this restriction of CD8+ T cells by lymphoid aggregates may contribute to the immunoregulation in the human decidual tissues. And in other area beside lymphoid aggregates in the normal decidua, there are also some mechanisms to reduce the inflammatory response. By this research, we hope to understand more about the complicated microenvironment during pregnancy and that mechanisms may promote successful implantation and fetus development.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:08:40Z (GMT). No. of bitstreams: 1
ntu-96-R94449008-1.pdf: 5546949 bytes, checksum: 08ca9012f15b2e76b7c9eac16588a104 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
論文口試委員審定書……………………………………………………………………i
授權書...............................................................................................................................ii
致謝..................................................................................................................................iii
中文摘要…………………………………………………………………..…………....iv
Abstract…………………………………………………………………….………….....v
Contents…………………………………………………………...……….…………...vii
Figure and Table of Contents…………….………………………….………...………...ix
Chapter I Introduction……………………………………….………………………...1
1.1 Immune system modification in the human pregnancy………………….......2
1.2 Regulatory T cell and pregnancy…………………………..………………...5
1.3 CD8+ T cell-rich lymphoid aggregate in human endometrium………....…...8
1.4 Effector activity of CD8+ T cells in human endometrium……………...……9
1.5 Purpose of our study…………………………………………………………9
Chapter II Materials and Methods…………………………………………...……...12
2.1 Sample collection and preparation…………………………….…………...13
2.2 Fixation………………………………………………………...…………...13
2.3 Immunohistochemistry (IHC) ……………………………………………...14
2.4 Immunofluorescence staining (IF)……………………......………………...15
2.5 H & E staining………………………………………………………....…...17
2.6 Data Analysis……………………………………………………..………...18
2.7 Statistical Analysis…………...……………………………………………..18
Chapter III Results……………………………………………………………………19
3.1 Distribution of FOXP3+ cells in human decidual tissues..............................20
3.2 Population of FOXP3+ cells in human normal decidual tissues was
significantly higher than in human anembryonic decidual tissues…………21
3.3 Composition of CD8+ T cell-rich lymphoid aggregates……………………22
3.4 Effector function of CD8+ T cells and uNK cells inside and outside the
lymphoid aggregates…………………...…………………………………...24
3.5 Cytokines and chemokines around the CD8+ T cell-rich lymphoid
aggregates…………………….…………………………………………….26
Chapter IV Discussion……………………………….……………………......……...27
References……………………………………………..……………………………...34
Figures and Tables……………………………………………………………………...43

Figure and Table of Contents
Figure 1. H&E or IHC staining of FOXP3+ cells in normal human decidua………...44
Figure 2. Immunostaining of FOXP3+ cells in normal human decidua……...………45
Figure 3. More FOXP3+ cells appear around the CD3+ cell lymphoid aggregates in
normal human decidual tissues.…………………...…………………...…...46
Figure 4. Phenotype of FOXP3+ cells in human decidual tissues. FOXP3+ cells are
CD4+ CD25+ Tregs and physical contact with CD8+ T cells...…..…..…......47
Figure 5. Proportion of FOXP3+ cells in CD3+ cell population from human normal decidual tissues was significantly higher than human anembryonic decidual
tissues.……………………….……………………………...……………....48
Figure 6. Composition of CD8+ T cell-rich lymphoid aggregates.…………...…........49
Figure 7. Schematic illustrating the composition of CD8+ T cell-rich lymphoid
aggregates……………….…………….………………………..…………..51
Figure 8. Expressions of Granzyme A, Granzyme B and Perforin in human normal
and anembryonic decidual tissues.…………………...…………..………...52
Figure 9. TGF-β localizes in the stroma of human decidual tissues.…………..……..56
Figure 10. Our model of suggested regulatory mechanisms about CD8+ T cell-rich
lymphoid aggregates, FOXP3+ Tregs, and uNK cells in decidual tissues
from normal human pregnancies...………………...…………………….…57
Table 1. Anti-human primary antibodies used for immunofluorescence stainig……..58
Table 2. Secondary antibodies used for immunofluorescence staining………………59
Table 3. The medium, 25%, and 75% of FOXP3+ cell percentage in CD3+ cell
population from human normal and anembryonic decidual tissues...……...60
Table 4. Characteristics of CD8+ T cell-rich lymphoid aggregates in decidua from
normal and anembryonic pregnancies……………………………..….........61
Table 5. Characteristics of Gramzyme A, Granzyme B, Perforin, and TGF-β in
decidua from normal and anembryonic pregnancies…………….…………62
dc.language.isoen
dc.subjectCD8 T 細胞聚集zh_TW
dc.subject調節性 T 細胞zh_TW
dc.subject子宮內膜zh_TW
dc.subjectFOXP3en
dc.subjectDeciduaen
dc.subjectCD8+ T Cell-Rich Lymphoid Aggregatesen
dc.titleFOXP3 調節性 T 細胞以及 CD8 T 細胞聚集在人類正常與無胚胎懷孕子宮內膜組織中的分佈情形zh_TW
dc.titleDistribution of FOXP3+ Regulatory T Cells and CD8+ T Cell-Rich Lymphoid Aggregates in Decidua from Human Normal and Anembryonic Pregnanciesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江伯倫(Bor-Luen Chiang),伍安怡(Betty A. Wu-Hsieh),李建國(Chien-Kuo Lee)
dc.subject.keyword調節性 T 細胞,CD8 T 細胞聚集,子宮內膜,zh_TW
dc.subject.keywordFOXP3,CD8+ T Cell-Rich Lymphoid Aggregates,Decidua,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
Appears in Collections:免疫學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
5.42 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved