請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29479完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Shu-Wei Zhang | en |
| dc.contributor.author | 張書瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:08:10Z | - |
| dc.date.available | 2012-07-24 | |
| dc.date.copyright | 2007-07-24 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | [1] Chalana V, Linker DT, Haynor DR, Kim Y. “A multiple active contour model for cardiac boundary detection on echocardiographic sequences,” IEEE Transactions on Med Imaging, vol. 15, pp.290 –298, 1996.
[2] Chen DR, Chang RF, Wu WJ, Moon WK, Wu WL. “3-D breast ultrasound segmentation using active contour model,” Ultrasound Med Biology, vol. 29, no. 7, pp. 1017-1026, 2003. [3] Chang RF, Wu WJ, Moon WK, Chen DR. “Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors,” Breast Cancer Res Treat, vol. 89, no. 2, pp. 179-185, 2005. [4] Ye X, Noble JA, Atkinson D. “3-D freehand echocardiography for automatic left ventricle reconstruction and analysis based on multiple acoustic windows,” IEEE Transactions on Med Imaging, vol. 21, pp. 1051–1058, 2002. [5] Cigale B, Zazula D. “Segmentation of Ovarian Ultrasound Images Using Cellular Neural Networks,” Int. J. Pattern Recogn, vol. 18, no. 4, pp. 563–581, 2004. [6] Shen DG, Zhan ZQ, Davatzikos C. “Segmentation of prostate boundaries from ultrasound images using statistical shape model,” IEEE Transactions on Med Imaging, vol. 22, no. 4, pp. 539 –551, 2003. [7] Joo S, Yang YS, Moon WK, Kim HC. “Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features,” IEEE Transactions on Med Imaging, vol. 23, no. 10, pp.1292-1300, 2004. [8] Kass M, Witkin A, Terzopoulos D. ”Snakes: Active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. [9] Cohen LD. “On active contour models and balloons,” CVGIP: Imag. Under., vol. 53, no. 2, pp. 211-218, 1991. [10] Caselles V, Kimmel R, Sapiro G.. “Geodesic active contours,” International Journal of Computer Vision, vol. 22, no. 1, pp. 61-79, 1997. [11] Chan TF, Vese LA. “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266-277, 2001. [12] Gouze A, de Roover C, Herbulot A, Debreuve E, Barlaud M, Macq B. “Watershed-driven active contours for moving object segmentation,” IEEE International Conference on Image Processing, vol.2, pp. 818–821, 2005. [13] Chen CM, Chou YH, Chen Curtis SK, Cheng JZ, Ou YF, Yeh FC, Chen KW. “Cell-competition algorithm: a new segmentation algorithm for multiple objects with irregular boundaries in ultrasound images,” Ultrasound in Med. & Biol., vol. 31, no. 12, pp. 1647–1664, 2005. [14] 吳旻鴻, “基於等時性演化之區域單元競爭演算法,”台大醫工所碩士論文, 2005. [15] Malladi R, Sethian JA, Vemuri B. “Shape modeling with front propagation: A Level Set Approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-176, 1995. [16] Shi J, Malik J. “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, no. 8, 2000. [17] Yu Stella X, Shi J. “Segmentation given partial grouping constraints,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 2, pp. 173-83, 2004. [18] Wu Z, Leahy R. “An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1101-1113, 1993. [19] Cox IJ, Rao SB, Zhong Y. “Ratio Regions: A Technique for Image Segmentation,” Proc. 13th Int'l Conf. Pattern Recognition, vol. 2, pp. 557-564, 1996. [20] Gastaud M, Barlaud M, Aubert G.. “Combining shape prior and statistical features for active contour segmentation,” IEEE TCSVTspecial session on Audio and Video Analysis for Interactive Multimedia Services, vol. 14, no. 5, pp. 726–734, 2004. [21] Saito T, Toriwaki JJ. “New algorithms for euclidian distance transformations of an n-dimensional digitised picture with applications,” In Patern Recognition, vol. 27, pp. 1551–1565, 1994. [22] Cremers D, Osher S, Soatto S. “Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: teaching level sets to walk,” In Pattern Recognition Proc. of DAGM., vol. 3175, pp. 36-44, 2004. [23] Chalana V, Linker DT, Haynor DR, Kim Y. “A multiple active contour model for cardiac boundary detection on echocardiographic sequences,” IEEE Transactions on Med Imaging, vol. 15, pp. 290-298, 1996. [24] Vincent L, Soille P. “Watershed in digital spaces: an efficient algorithm based on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 6, pp. 583-597, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29479 | - |
| dc.description.abstract | 超音波影像之目標物自動邊緣偵測,可幫助臨床醫師找尋可疑的目標物,節省檢測人員手繪目標物的時間,還可以應用於超音波影像之電腦輔助診斷,新進醫師的輔助教學,對於醫療診斷與教學研究都有幫助。
本研究提出一種新的超音波影像分割技術,此法結合了等位函數法及區域單元競爭演算法之區域單元結構以及圖形劃分的資訊,應用於超音波的影像分割上面。由於超音波影像具有低對比、高雜訊、斑點、假影以及周圍組織相關紋理等現象,導致超音波影像的目標物邊界模糊而不易辨識。 基於區域單元競爭演算法可以將ROI區分出若干個我們有興趣的顯著區塊,例如;組織的結構、假影等。於是在本研究中一開始先利用區域單元競爭演算法得到影像中目標物最有可能的邊界,而後在等位函數法能量函數中加入區域單元邊界資訊的能量函數,將它視為目標物的形狀資訊,並利用Constrained Normalized Cut所得到的第二小的特徵向量去調整邊界資訊的重要程度。將整個等位函數法的能量函數中考慮到區域、邊界和目標物形狀的特性。利用較具視覺的區域單元邊界去吸引主動輪廓線,並克服微弱邊界和破碎邊緣的問題。 本研究利用了472張乳房腫瘤超音波影像作為驗證,其中包含221張惡性腫瘤,251張良性腫瘤影像,在本文最後的結果顯示,此方法可成功處理超音波影像目標物微弱邊界的偵測。 | zh_TW |
| dc.description.abstract | Automatic boundary extraction of multiple targets of interest in an ultrasound image can not only help clinicians find out most perceptible objects, but also save sonologists’ time for boundary delineation. Moreover, it is potentially helpful for the novice instruction and medical research.
In this paper we propose a new method combining the level set method with the cell competition structure information and graph partition prior in ultrasound image segmentation. Because of the intrinsic properties in ultrasound images, such as low contrast, high noises, speckle, artifacts, tissue related textures and so on, it is difficult to identify the blurred boundaries or weak edges in ultrasound images. Since the cell competition algorithm can divide the ROI (Region of Interest) into several prominent components, which can be parts of the desired target, tissue structures, artifacts, and so on, we first apply it to capture the most likely visually perceived boundaries in ultrasound images. Then we regard the boundaries of the prominent components as shape prior knowledge and integrate it into the level set energy function. Next, we adjust the importance of the boundary information by a spatially variant band constructed from the second smallest eigenvector via the constrained normalized-Cut. The proposed method unifies the region-based, and boundary-based information as well as the shape prior in the level set energy function. The active contours are attracted by the visually perceived boundaries defined by the cell structures and the broken edges and weak edges of the cell structure are overcome by incorporating the second smallest eigenvector computed by the constrained normalized cut. The proposed algorithm has been validated on 472 breast sonograms which comprise 221 malignant and 251 benign cases. The result shows the proposed method can detect weak edges successfully in ultrasound images. Moreover, the boundaries derived by the proposed method are comparable to the manually delineated boundaries and robust in reproducibility. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:08:10Z (GMT). No. of bitstreams: 1 ntu-96-R94548029-1.pdf: 12350748 bytes, checksum: 7afaa65b88b34addc8f5d0495799c63d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝 …………………………………………………I
中文摘要 ……………………………………………II 英文摘要 ……………………………………………III 第一章:緒論…………………………………………1 1.1研究動機…………………………………………1 1.2研究目的…………………………………………3 1.3資料取得…………………………………………4 1.4研究架構…………………………………………4 第二章 等位函數法(Level Set Method)…………6 2.1 幾何式主動輪廓線模型 ………………………6 2.2 Active Contours Without Edges……………9 2.3 Active Contours Without Edges泛函設計…12 第三章 區域單元競爭演算法………………………16 3.1 前置分割步驟…………………………………16 3.2 分水嶺演算法(Watershed Transform)………17 3.3 區域單元競爭演算法(Cell Competition Algorithm)……19 3.3.1 合併與分割的限制條件………………………20 3.3.2 Two sample t test …………………………20 3.3.3 局部相似值……………………………………21 3.3.4全域變異值 ……………………………………23 3.3.5區域能量函數最小化(Local Energy Minimization)……25 第四章 圖形劃分(Graph Cut)………………………27 4.1 Normalized Cut Method ………………………27 4.2 Constrained Normalized Cut…………………31 第五章: 融合等位函數法與區域單元結構和圖形劃分資訊之演算法……36 5.1融合等位函數法與區域單元結構和圖形劃分資訊之演算法……36 5.2 形狀資訊 (Shape Prior)………………………40 5.2.1等位函數法上的實做 …………………………43 5.2.2 視區域單元結構為邊界資訊…………………43 第六章:結果與討論 ………………………………46 6.1影像取得 …………………………………………46 6.2 實驗結果與討論 …………………………………46 6.2.1 本方法與傳統等位函數法的比較……………47 6.2.2 破碎邊緣影像的結果…………………………59 6.2.3 實驗方法結果呈現……………………………65 6.3 演算法分割結果與手繪分割之比較……………123 第七章: 結論與未來研究方向………………………125 參考文獻………………………………………………127 附錄……………………………………………………130 | |
| dc.language.iso | zh-TW | |
| dc.subject | 等位函數法 | zh_TW |
| dc.subject | 形狀資訊 | zh_TW |
| dc.subject | 圖形理論 | zh_TW |
| dc.subject | 區域單元競爭 | zh_TW |
| dc.subject | 微弱邊界 | zh_TW |
| dc.subject | 超音波影像 | zh_TW |
| dc.subject | Weak Edges | en |
| dc.subject | Shape Prior | en |
| dc.subject | Graph Theory | en |
| dc.subject | Cell Competition | en |
| dc.subject | Level Set | en |
| dc.subject | Ultrasound Images | en |
| dc.title | 融合等位函數法與區域單元結構和圖形劃分資訊於乳房腫瘤超音波之分割 | zh_TW |
| dc.title | Level Set Method with Cell Structure and Graph Partition Prior for Segmentation of Sonographic Breast Lesions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許志宇,詹寶珠,孫永年 | |
| dc.subject.keyword | 超音波影像,等位函數法,區域單元競爭,圖形理論,形狀資訊,微弱邊界, | zh_TW |
| dc.subject.keyword | Ultrasound Images,Level Set,Cell Competition,Graph Theory,Shape Prior,Weak Edges, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 12.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
