請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29474完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩 | |
| dc.contributor.author | Hsin-Ping Wang | en |
| dc.contributor.author | 王新平 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:08:02Z | - |
| dc.date.available | 2013-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-03 | |
| dc.identifier.citation | Chapter 1 Introduction
(1) Doshi, P.; Jellison, G. E.; Rohatgi, A. Appl. Optics 1997, 36, 7826-7837. (2) Chhajed, S.; Schubert, M. F.; Kim, J. K.; Schubert, E. F. Appl. Phys. Lett. 2008, 93, 251108. (3) Ullmann, J.; Mertin, M.; Lauth, H.; Bernitzki, H.; Mann, K. R.; Ristau, D.; Arens, W.; Thielsch, R.; Kaiser, N. Proc. SPIE 2000, 3902, 514. (4) Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat. Mater. 2010, 9, 239. (5) Li, J. S.; Yu, H. Y.; Wong, S. M.; Li, X. C.; Zhang, G.; Lo, P. G. Q.; Kwong, D. L. Appl. Phys. Lett. 2009, 95, 243113. (6) Hu, L.; Chen, G. Nano Lett. 2007, 7, 3249. (7) Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Nano Lett. 2009, 9, 279. (8) Lin, Y. R.; Lai, K. Y.; Wang, H. P.; He, J. H. Nanoscale 2010, 2, 2765. (9) Lin, C. X.; Povinelli, M. L. Opt. Express 2009, 17, 19371. (10) Chang, H. C.; Lai, K. Y.; Dai, Y. A.; Wang, H. H.; Lin, C. A.; He, J. H. Energy Environ. Sci. 2011, DOI: 10.1039/c0ee00595 Chapter 2 Investigations of Antireflection Effect of Si Nanorod Arrays with Different Diameters (1) Zhang, X. Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Jin-Phillipp, N. Y.; Phillipp, F. Adv. Mater. 2001, 13, 1238-1241. (2) Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Nano Lett. 2006, 6, 973-977. (3) Fang, X. S.; Bando, Y.; Gautam, U. K.; Ye, C.; Golberg, D. J. Mater. Chem. 2008, 18, 509-522. (4) Fang, X. S.; Bando, Y.; Ye, C. H.; Shen, G. Z.; Gautam, U. K.; Tang, C. C.; Golberg, D. Chem. Commun. 2007, 4093-4095. (5) Zhu, J.; Hsu, C.-M.; Yu, Z.; Fan, S.; Cui, Y. Nano Lett. 2009, 10 , 1979-1984. (6) Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Electroanal. 2006, 18, 533-550. (7) Schmidt, V.; Senz, S.; Gosele, U. Nano Lett. 2005, 5, 931-935. (8) Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J. F.; Lieber, C. M. Appl. Phys. Lett. 2001, 78, 2214-2216. (9) Smith, R. L.; Collins, S. D. J. Appl. Phys. 1992, 71, R1-R22. (10) Peng, K. Q.; Huang, Z. P.; Zhu, J. Adv. Mater. 2004, 16, 73-76. (11) Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. Adv. Mater. 2008, 20, 3811-3815. (12) Chang, S. W.; Chuang, V. P.; Boles, S. T.; Ross, C. A.; Thompson, C. V. Adv. Funct. Mater. 2009, 19, 2495-2500. (13) Huang, Z. P.; Fang, H.; Zhu, J. Adv. Mater. 2007, 19, 744-748. (14) Huang, Z. P.; Zhang, X. X.; Reiche, M.; Liu, L. F.; Lee, W.; Shimizu, T.; Senz, S.; Gosele, U. Nano Lett. 2008, 8, 3046-3051. (15) Doshi, P.; Jellison, G. E.; Rohatgi, A. Appl. Optics 1997, 36, 7826-7837. (16) Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Nanotechnology 2000, 11, 161-164. (17) Huang, J. Y.; Wang, X. D.; Wang, Z. L. Nano Lett. 2006, 6, 2325-2331. (18) Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M. F.; Lin, S. Y.; Liu, W.; Smart, J. A. Nat. Photonics 2007, 1, 176-179. (19) Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M. Prog. Photovoltaics 2007, 15, 415-423. (20) Clapham, P. B.; Hutley, M. C. Nature 1973, 244, 281-282. (21) Xi, J. Q.; Kim, J. K.; Schubert, E. F. Nano Lett. 2005, 5, 1385-1387. (22) Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. Science 1998, 282, 274-276. (23) Li, J. S.; Yu, H. Y.; Wong, S. M.; Zhang, G.; Sun, X. W.; Lo, P. G. Q.; Kwong, D. L. Appl. Phys. Lett. 2009, 95, 033102-033102-3. (24) Hsieh, H. Y.; Huang, S. H.; Liao, K. F.; Su, S. K.; Lai, C. H.; Chen, L. J. Nanotechnology 2007, 18, 505305. (25) Li, X.; Bohn, P. W. Appl. Phys. Lett. 2000, 77, 2572-2574. (26) Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387-394. (27) Li, Y. F.; Zhang, J. H.; Zhu, S. J.; Dong, H. P.; Wang, Z. H.; Sun, Z. Q.; Guo, J. R.; Yang, B. J. Mater. Chem. 2009, 19, 1806-1810. (28) Lee, C. L.; Tsujino, K.; Kanda, Y.; Ikeda, S.; Matsumura, M. J. Mater. Chem. 2008, 18, 1015-1020. (29) Mohring, H. D.; Abel, C. D.; Bruggemann, R.; Bauer, G. H. J. Non-Cryst. Solids. 1991, 137, 847-850. (30) Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Nano Lett. 2009, 9, 279-282. (31) Poruba, A.; Fejfar, A.; Remes, Z.; Springer, J.; Vanecek, M.; Kocka, J.; Meier, J.; Torres, P.; Shah, A. J. Appl. Phys. 2000, 88, 148-160. (32) Chattopadhyray, S.; Chen, L. C.; Chen, K. H. Crit. Rev. Solid. State. 2006, 31, 15-53. (33) Hu, L.; Chen, G. Nano Lett. 2007, 7, 3249-3252. (34) Lin, Y. R.; Wang, H. P.; Lin, C. A.; He, J. H. J. Appl. Phys. 2009, 106, 114310-114310-4. (35) Kanamori, Y.; Sasaki, M.; Hane, K. Opt. Lett. 1999, 24, 1422-1424. (36) Kawanishi, T. Opt. Commun. 2000, 186, 251-258. Chapter 3 Optical Properties of Si Nanowire Arrays with 100 nm in Periodicity Using Anodic Aluminum Oxide Templates (1) Choi, J. M.; Im, S. Appl. Surf. Sci. 2005, 244, 435. (2) Richards, B. S. Sol. Energ. Mat. Sol. C. 2006, 90, 2329. (3) Chhajed, S.; Schubert, M. F.; Kim, J. K.; Schubert, E. F. Appl. Phys. Lett. 2008, 93, 251108. (4) Lin, Y. R.; Lai, K. Y.; Wang, H. P.; He, J. H. Nanoscale 2010, 2, 2765. (5) Sai, H.; Fujii, H.; Arafune, K.; Ohshita, Y.; Yamaguchi, M.; Kanamori, Y.; Yugami, H. Appl. Phys. Lett. 2006, 88, 201116. (6) Chern, W.; Hsu, K.; Chun, I. S.; de Azeredo, B. P.; Ahmed, N.; Kim, K. H.; Zuo, J. M.; Fang, N.; Ferreira, P.; Li, X. L. Nano Lett. 2010, 10, 1582. (7) Sai, H.; Kanamori, Y.; Arafune, K.; Ohshita, Y.; Yamaguchi, M. Prog. Photovoltaics 2007, 15, 415. (8) Lin, Y. R.; Wang, H. P.; Lin, C. A.; He, J. H. J. Appl. Phys. 2009, 106, 114310. (9) Wang, H. P.; Lai, K. Y.; Lin, Y. R.; Lin, C. A.; He, J. H. Langmuir 2010, 26, 12855. (10) Nositschka, W. A.; Beneking, C.; Voigt, O.; Kurz, H. Sol. Energ. Mat. Sol. C. 2003, 76, 155. (11) Fan, Z.; Kapadia, R.; Leu, P. W.; Zhang, X.; Chueh, Y. L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A. A.; Ruebusch, D. J.; Wu, M.; Javey, A. Nano Lett. 2010, 10, 3823. (12) Dai, Y. A.; Chang, H. C.; Lai, K. Y.; Lin, C. A.; Chung, R. J.; Lin, G. R.; He, J. H. J. Mater. Chem. 2010, 20, 10924. (13) Masuda, H.; Fukuda, K. Science 1995, 268, 1466. (14) Liu, C. H.; Zapien, J. A.; Yao, Y.; Meng, X. M.; Lee, C. S.; Fan, S. S.; Lifshitz, Y.; Lee, S. T. Adv. Mater. 2003, 15, 838. (15) Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023. (16) Li, X.; Bohn, P. W. Appl. Phys. Lett. 2000, 77, 2572. (17) Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387. (18) Bhatt, K.; Tan, S.; Karumuri, S.; Kalkan, A. K. Nano Lett. 2010, 10, 3880. (19) Clapham, P. B.; Hutley, M. C. Nature 1973, 244, 281. (20) Wilson, S. J.; Hutley, M. C. Opt. Acta 1982, 29, 993. (21) Ho, P. K. H.; Stephen , D.; Thomas; Friend, R. H.; Tessler, N. Science 1999, 285, 233. (22) Erman, M.; Theeten, J. B.; Chambon, P.; Kelso, S. M.; Aspnes, D. E. J. Appl. Phys. 1984, 56, 2664. (23) Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Nanotechnology 2000, 11, 161. (24) Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E.; Lagendijk, A. Nano Lett. 2008, 8, 2638. (25) Lee, Y. C.; Huang, C. F.; Chang, J. Y.; Wu, M. L. Opt. Express 2008, 16, 7969. (26) Born, M.; Wolf, E. New York: Pergamon 1987, sec. 8.6.1, eq. (8). (27) Cao, L.; Fan, P.; Vasudev, A. P.; White, J. S.; Yu, Z.; Cai, W.; Schuller, J. A.; Fan, S.; Brongersma, M. L. Nano Lett. 2010, 10, 439. (28) Cao, L.; Nabet, B.; Spanier, J. E. Phys. Rev. Lett. 2006, 96, 157402. (29) Shi, W. S.; Peng, H. Y.; Zheng, Y. F.; Wang, N.; Shang, N. G.; Pan, Z. W.; Lee, C. S.; Lee, S. T. Adv. Mater. 2000, 12, 1343. Chapter 4 Photon Management in Tandem Thin-Film Solar Cells by Tunable Nanoislands (1) Chopra, K. L.; Paulson, P. D.; Dutta, V. Prog. Photovoltaics 2004, 12, 69. (2) Browne, B.; Ioannides, A.; Connolly, J.; Barnham, K.; Roberts, J.; Airey, R.; Hill, G.; Smekens, G.; Van Begin, J. Photovoltaic Specialists Conference 2008. PVSC '08. 33rd IEEE, 1. (3) Green, M. A. Springer 2003. (4) Conibeer, G. Mater. Today 2007, 10, 42. (5) Brown, A. S.; Green, M. A. Physica E 2002, 14, 96. (6) Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M. Appl. Phys. Lett. 1997, 70, 381. (7) Dewan, R.; Knipp, D. J. Appl. Phys. 2009, 106, 074901. (8) Zhang, W.; Bunte, E.; Worbs, J.; Siekmann, H.; Kirchhoff, J.; Gordijn, A.; Hupkes, J. phys. status solidi (c) 2010, 7, 1120. (9) Lin, C. C.; Liu, W. L.; Hsieh, C. Y. J. Appl. Phys. 2011, 109, 014508. (10) Zhu, J.; Hsu, C. M.; Yu, Z. F.; Fan, S. H.; Cui, Y. Nano Lett. 2010, 10, 1979. (11) Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L. C.; Joannopoulos, J. D. Opt. Express 2007, 15, 16986. (12) Bielawny, A.; Rockstuhl, C.; Lederer, F.; Wehrspohn, R. B. Opt. Express 2009, 17, 8439. (13) Soderstrom, T.; Haug, F. J.; Niquille, X.; Terrazzoni, V.; Ballif, C. Appl. Phys. Lett. 2009, 94, 063501. (14) Muller, J.; Rech, B.; Springer, J.; Vanecek, M. Sol. Energy 2004, 77, 917. (15) Berginski, M.; Hupkes, J.; Schulte, M.; Schope, G.; Stiebig, H.; Rech, B.; Wuttig, M. J. Appl. Phys. 2007, 101, 074903. (16) Hongsingthong, A.; Krajangsang, T.; Yunaz, I. A.; Miyajima, S.; Konagai, M. Appl. Phys. Express 2010, 3, 051102. (17) Krc, J.; Smole, F.; Topic, M. SPIE Newsroom 2006, DOI: 10.1117/2.1200606.0286. (18) Haase, C.; Stiebig, H. Proc. SPIE 2006, 6197, 619705. (19) Je, J. H.; Kang, T. S.; Noh, D. Y. J. Appl. Phys. 1997, 81, 6716. (20) Lo, S. S.; Haung, D.; Jan, D. J. Opt. Express 2010, 18, 662. (21) Kluth, O.; Rech, B.; Houben, L.; Wieder, S.; Schope, G.; Beneking, C.; Wagner, H.; Loffl, A.; Schock, H. W. Thin Solid Films 1999, 351, 247. (22) Wang, H. P.; Lai, K. Y.; Lin, Y. R.; Lin, C. A.; He, J. H. Langmuir 2010, 26, 12855. (23) Clapham, P. B.; Hutley, M. C. Nature 1973, 244, 281. (24) Wilson, S. J.; Hutley, M. C. J. Mod. Optic. 1982, 29, 993. (25) Hadobas, K.; Kirsch, S.; Carl, A.; Acet, M.; Wassermann, E. F. Nanotechnology 2000, 11, 161. (26) Haase, C.; Stiebig, H. Appl. Phys. Lett. 2007, 91, 061116. (27) Erman, M.; Theeten, J. B.; Chambon, P.; Kelso, S. M.; Aspnes, D. E. J. Appl. Phys. 1984, 56, 2664. (28) Kikuta, H.; Toyota, H.; Yu, W. Opt. Rev. 2003, 10, 63. (29) Fay, S.; Feitknecht, L.; Schluchter, R.; Kroll, U.; Vallat-Sauvain, E.; Shah, A. Sol. Energ. Mat. Sol. C. 2006, 90, 2960. (30) Liu, Y.; Daum, P. H. J. Aerosol Sci. 2000, 31, 945. (31) Beckmann, P.; Spizzichino, A. Artech House Publishers, 1987. (32) Carniglia, C. K. Opt. Eng. 1979, 18, 104. (33) Domine, D.; Buehlmann, P.; Bailat, J.; Billet, A.; Feltrin, A.; Ballif, C. Phys. Status Solidi-R 2008, 2, 163. (34) Girasole, M.; Pompeo, G.; Cricenti, A.; Congiu-Castellano, A.; Andreola, F.; Serafino, A.; Frazer, B. H.; Boumis, G.; Amiconi, G. BBA - Biomembranes 2007, 1768, 1268. (35) Lohmuller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Nano Lett. 2008, 8, 1429. (36) Dewan, R.; Marinkovic, M.; Noriega, R.; Phadke, S.; Salleo, A.; Knipp, D. Opt. Express 2009, 17, 23058. (37) Isabella, O.; Krc, J.; Zeman, M. Appl. Phys. Lett. 2010, 97, 101106. (38) Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. (39) Brendel, R.; Queisser, H. J. Sol. Energ. Mat. Sol. C. 1993, 29, 397. (40) Yeh, L. K.; Lai, K. Y.; Lin, G. J.; Fu, P. H.; Chang, H. C.; Lin, C. A.; He, J. H. Adv. Energy Mater. 2011, DOI: 10.1002/aenm.201100025. (41) Tanabe, K.; Fontcuberta i Morral, A.; Atwater, H. A.; Aiken, D. J.; Wanlass, M. W. Appl. Phys. Lett. 2006, 89, 102106. (42) Kanamori, Y.; Sasaki, M.; Hane, K. Opt. Lett. 1999, 24, 1422. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29474 | - |
| dc.description.abstract | In this thesis, the periodic Si nanopillar arrays (NPAs) and Si nanowire arrays (NWAs) as an AR surfaces were fabricated by self-assembly method, and the optical properties of Si NWAs are discussed in detail. Finally, we apply the optical properties of nanostructures with different morphology on the tandem Si thin-film solar cell. The efficiency is enhanced 28%.
First of all, periodic Si NPAs were fabricated by the colloidal lithography combined with catalytic etching. By varying the size of colloidal crystals using oxygen plasma etching, Si NPAs with desirable diameter and fill factor could be obtained. The Fresnel reflection can be eliminated effectively over broadband regions by NPAs; i.e., the wavelength-averaged specular reflectance is decreased to 0.70 % at the wavelengths of 200-1900 nm. The reflectance is reduced greatly for the incident angles up to 70° for both s- and p-polarized light. These excellent AR performances are attributed to light trapping effect and very low effective refractive indices, which can be modified by the fill factor of Si in the NPA layers. Second, large-area, periodic Si NWAs were fabricated by catalytic etching with anodic aluminum oxide as a patterning mask. The 100-nm-periodicity NWAs serve an AR function especially at the wavelengths of 200~400 nm, where the reflectance is decreased to be almost tenth of the value of the polished Si (from 62.9% to 7.9%). These NWAs show very low reflectance for broadband wavelengths and omnidirectional light incidence, attributed to the small periodicity and the stepped refractive index of NWA layer. The experimental results are confirmed by theoretical calculations. Raman scattering intensity was also found to be significantly increased with Si NWAs. The introduction of this industrial-scale self-assembly methodology for light harvesting greatly advances the development of Si-based optical devices. Finally, glass substrates with tunable nano- and microislands using self-assembly masks and reactive ion etching were successfully fabricated and applied for tandem Si thin-film solar cells. The morphology of islands greatly influence their optical properties: the microisland structure leads to high scattering, widening the distribution of optical waves within the solar cells, while the nanoisland structure enhances the transmittance and suppresses omnidirectional reflection. The two types of structures were further employed for device fabrications. The conversion efficiency is enhanced by 28%. The enhancement is attributed to the increased optical absorption through the improved transmittance and scattering across the layer interfaces. These studies should benefit the design and fabrication of future Si thin-film solar cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:08:02Z (GMT). No. of bitstreams: 1 ntu-100-R98941093-1.pdf: 2275322 bytes, checksum: f6605f906382150e15783a485ef0a71a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV Table of Contents VI List of Figures VII Chapter 1 Introduction 1 References 2 Chapter 2 Investigations of Antireflection Effect of Si Nanorod Arrays with Different Diameters 3 2.1 Introduction 3 2.2 Experiments 6 2.3 Results and discussion 7 2.4 Summary 17 References 18 Chapter 3 Optical Properties of Si Nanowire Arrays with 100 nm in Periodicity Using Anodic Aluminum Oxide Templates 20 3.1 Introduction 20 3.2 Experiments 22 3.3 Results and discussion 24 3.4 Summary 36 References 37 Chapter 4 Photon Management in Tandem Thin-Film Solar Cells by Tunable Nanoislands 39 4.1 Introduction 39 4.2 Experiments 42 4.3 Results and discussion 44 4.4 Summary 56 References 57 Chapter 5 Conclusion 59 Publication list 61 Hsin-Ping Wang CV 65 | |
| dc.language.iso | en | |
| dc.subject | 金屬輔助化學蝕刻 | zh_TW |
| dc.subject | 奈米柱(線) | zh_TW |
| dc.subject | 次波長 | zh_TW |
| dc.subject | 霧度 | zh_TW |
| dc.subject | 抗反射 | zh_TW |
| dc.subject | 膠體顯影術 | zh_TW |
| dc.subject | 陽極氧化鋁模板 | zh_TW |
| dc.subject | Haze | en |
| dc.subject | Anti-reflection | en |
| dc.subject | Subwavelength | en |
| dc.subject | Colloidal lithography | en |
| dc.subject | Anodic Aluminum Oxide template | en |
| dc.subject | Metal-assisted chemical etching | en |
| dc.subject | Nanorod (Nanowire) | en |
| dc.title | 利用自組性模板製備作為太陽能電池用之寬頻廣角光擷取的奈米結構 | zh_TW |
| dc.title | Nanostructure Arrays Using Self-Assembly Templates for Broadband Omnidirectional Light Harvesting of Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉致為,林麗瓊,陳麒麟 | |
| dc.subject.keyword | 抗反射,次波長,膠體顯影術,陽極氧化鋁模板,金屬輔助化學蝕刻,奈米柱(線),霧度, | zh_TW |
| dc.subject.keyword | Anti-reflection,Subwavelength,Colloidal lithography,Anodic Aluminum Oxide template,Metal-assisted chemical etching,Nanorod (Nanowire),Haze, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
