Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorChien-Yu Chenen
dc.contributor.author陳建宇zh_TW
dc.date.accessioned2021-06-13T01:07:57Z-
dc.date.available2007-07-24
dc.date.copyright2007-07-24
dc.date.issued2007
dc.date.submitted2007-07-19
dc.identifier.citation[1] Anantha, V., and A. Taflove, 'Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML,' IEEE Trans. Antenna Propagat., vol. 50, pp. 1337-1349, 2002.
[2] Astilean, S., Ph. Lalanne, and M. Palamaru, 'Light transmission through metallic channels much smaller than the wavelength,' Opt. Comm., vol. 175, pp. 265-273, 2000.
[3] Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Computational Phys., vol. 114, pp. 185-200, 1994.
[4] Chang, S. H., and S. K. Gray, 'Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,' Opt. Express, vol. 13, pp. 3150-3165, 2005.
[5] Crouse, D., and P. Keshavareddy, 'Role of optical and surface plasmon modes in enhanced transmission and applications,' Opt. Express, vol. 13, pp. 7760-7771, 2005.
[6] Crouse, D., 'Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,' Opt. Express, vol. 15, pp. 1415-1427, 2006.
[7] Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, pp. 667-669, 1998.
[8] Garcia-Vidal, F. J., and J. B. Pendry, 'Collective theory for surface enhanced Raman scattering,' Phys. Rev. Lett., vol. 77, pp. 1163-1166, 1996.
[9] Garcia-Vidal, F. J., and L. Martin-Moreno, 'Transmission and focusing of light in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66, 155412, 2002.
[10] Garcia-Vidal, F. J., H. J. Lezec, T.W. Ebbesen, and L. Martin-Moreno, 'Multiple paths to enhance optical transmission through a single subwavelength slit,' Phys. Rev. Lett., vol. 90, 213901, 2003.
[11] Hibbins, A. P., J. R. Sambles, and C.R. Lawrence, 'Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,' Appl. Phys. Lett., vol. 81, pp. 4661-4663, 2002.
[12] Johnson, P. B., and R. W. Christy, 'Optical constants of the noble metals,' Phys. Rev. B, vol. 6, pp. 4370-4379, 1972.
[13] Kowarz, M. W., 'Homogeneous and evanescent contributions in scalar near-field diffraction,' Appl. Opt., vol. 34, pp. 3055-3063, 1995.
[14] Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, 'Beaming Light from a Subwavelength Aperture,' Science, vol. 297, pp. 820-822, 2002.
[15] Lezec, H. J., and T. Thio, 'Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,' Opt.
Express, vol. 12, pp. 3629-3651, 2004.
[16] Lin, C. N., Pseudospectral modelling of light interacting upon nano thin film with subwavelength holes or slits. M. S. Thesis, Graduate Institute of Applied Mathematics, National Cheng Kung University, Tainan, Taiwan, July 2006.
[17] Lockyear, M. J., A. P. Hibbins, and J. R. Sambles, 'Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,' Appl. Phys. Lett., vol. 84, pp. 2040-2042, 2004.
[18] Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T.W. Ebbesen, 'Theory of extraordinary optical transmission through subwavelength hole arrays,' Phys. Rev. Lett., vol. 86, pp. 1114-1117, 2001.
[19] Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T.W. Ebbesen, 'Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,' Phys. Rev. Lett., vol. 90, 167401, 2003.
[20] Okoniewski, M., M. Mrozowski, and M. A. Stuchly, 'Simple treatment of multiterm dispersion in FDTD,' IEEE Microwave Guided Wave Lett., vol. 7, pp. 121-123, 1997.
[21] Saj, W. M., 'FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice,' Opt. Express, vol. 13, pp. 4818-4827, 2005.
[22] Sonnichsen, C., Plasmons in metal nanostructures. PhD Thesis, Ludwig- Maximilians-Universtat Munchen, Munchen, 2001.
[23] Stratis, G., V. Anantha, and A. Taflove, 'Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD,' IEEE Trans. Antenna Propagat., vol. 45, pp. 1525-1529, 1997.
[24] Sukharev, M., and T. Seideman, 'Light trapping and guidance in plasmonic nanocrystals,' J. Chem. Phys., vol. 126, 204702, 2007.
[25] Taflove, A., and S. C. Hagness, Computational Electrodynamics: The Finite- Difference Time-Domain Method, 2nd edition. Boston, MA: Artech House, 2000.
[26] Takakura, Y., 'Optical Resonance in a Narrow Slit in a Thick Metallic Screen,' Phys. Rev. Lett., vol. 86, pp. 5601-5603, 2001.
[27] Yasumoto, K., H. Toyama, and T. Kushta, 'Accurate analysis of twodimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,' IEEE Trans. Antennas Propagat., vol. 52, pp. 2603-2611, 2004.
[28] Yee, K. S., 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propagat., vol. 3, pp. 302-307, 1966.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29471-
dc.description.abstract本篇論文採用有限差分時域法模擬研究以金屬為主的次波長元件。我們使用D ru d e 色散模型模擬金屬,並使用具有色散的單軸異向性完美匹配層作為相對應的計算空域吸收邊界。我們旨在研究次波長狹縫的異常光學透射現象。先前曾有文獻指出當p-極化的光波入射於一個具有單狹縫的金屬薄膜,並且在金屬表面製造凹槽陣列,在透射的頻譜上將會出現劇烈的峰值。在光波的入射面製造凹槽可以增強穿透率,而在光波的出射面製作凹槽可以調整透射光的發射方向。我們計算透射頻譜並觀察每個要素包括金屬薄膜的厚度、狹縫寬度、凹槽深度、凹槽週期以及凹槽的數目對頻譜的影響,並且嘗試著不對稱的排列凹槽。我們也檢查了由完美導體或是真實金屬製成的的薄膜,對於穿透特性的影響。我們嘗試設計這些結構,針對完美導體,理論上可以得到相對於入射光高達1 9 2 倍的穿透效率。這些現象可以用狹縫中的共振模態解釋。我們也探討了其他週期性結構的穿透特性,包括週期性排列的介電質和導體圓柱,以及探討得以造成表面增強拉曼光譜的粗糙金屬表面的電磁特性。zh_TW
dc.description.abstractIn this research, a two-dimensional finite-difference time-domain (FDTD) analysis is applied to model and study several subwavelength metallic structures. The Drude model for metallic material dispersion is implemented into the FDTD algorithm along with the dispersive uniaxial perfectly matched layer (UPML) as the absorbing boundary condition for the computational domain. This model is employed to study the extraordinary optical transmission of subwavelength slits. Previous literature has shown that when p-polarized wave impinging upon a corrugated metal thin film with a single slit, sharp peaks present on the transmission spectra at wavelengths much larger than the slit width. While the grooves in the input side of the thin film can enhance the transmission, grooves in the output side can shape the emerging radiation pattern. Here we calculate the transmission spectra and scan every factor that controls the transmission, including film thickness, slit width, groove depth, groove period, and the number of grooves. We also test the asymmetric groove patterns. The difference in transmission properties between the perfect electric conductor (PEC) thin film and the metal thin film is examined. We try to design the structure, and the maximum transmission enhancement up to 192 is observed for the PEC case. The resonance modes inside the slit can be used to explain these phenomena. The transmission properties of other periodic structures including periodic arrays of cylinders made of dielectric and metal are also analyzed. The electromagnetic effects on rough metallic surface for surface enhanced Raman scattering are studied.en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:07:57Z (GMT). No. of bitstreams: 1
ntu-96-R94941004-1.pdf: 8139258 bytes, checksum: 2ed422855c12ee9611ac526174029c06 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Mathematical Formulation 5
2.1 The Yee Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Modeling of Frequency Dispersive Materials . . . . . . .6
2.2.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Modeling of Metal with FDTD Lattice . . . . . . . . .. . 8
2.3 Perfect Matched Layer Absorbing Boundary Conditions . . . . . . . . 9
2.3.1 The Uniaxial PML . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 UPML Termination for Dispersive Media . . . . . . . . . . . . 13
2.4 Incident Wave Source Conditions . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Source Excitation Treatments . . . . . . . . . . . . . . . . . . 15
2.4.2 Plane Wave Source Conditions . . . . . . . . . . . . . . . . . . 16
3 Modeling of Conductor thin Film 20
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Some Remarks before Simulation . . . . . . . . . . . . . . . . . . . . 22
3.3 PEC Thin Film with Single Slit . . . . . . . . . . . . . . . . . . . . . 23
3.4 Single Slit with Grooves Patterned on the Surface . . . . . . . . . . . 25
3.4.1 Transmission Spectrum as a Function of the Number of Grooves in Different Surfaces . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Transmission Spectrum as a Function of the Number of Asymmetric
Patterned Grooves . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Transmission Spectrum as a Function of Slit Width . . . . . . 26
3.5 Design Rule for Obtaining Extraordinary Transmission . . . . . . . . 27
3.5.1 Mechanisms of Transmission Enhancement . . . . . . . . . . . 27
3.5.2 Enhanced Transmission When Three Mechanisms Coincide . . 28
3.6 Field Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Directional Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Modeling of Metal Thin Film . . . . . . . . . . . . . . . . . . . . . . 34
4 Modeling of Periodic Structures 79
4.1 Some Remarks before Simulation . . . . . . . . . . . . . . . . . . . . 79
4.2 Multilayered Periodic Arrays of Dielectric Cylinders . . . . . . . . . . 80
4.3 Multilayered Periodic Arrays of Metallic Cylinders . . . . . . . . . . . 82
4.4 Surface Enhanced Raman Scattering . . . . . . . . . . . . . . . . . . 83
5 Conclusion 95
dc.language.isoen
dc.subject常光學透射zh_TW
dc.subject有限差分時域法zh_TW
dc.subject次波長元件zh_TW
dc.subject金屬薄膜zh_TW
dc.subject光柵zh_TW
dc.subject繞射zh_TW
dc.subjectFinite-Difference Time-Domain Analysisen
dc.subjectextraordinary optical transmissionen
dc.subjectdiffractionen
dc.subjectgratingsen
dc.subjectmetal thin filmen
dc.subjectsubwavelength structuresen
dc.title以有限差分時域法分析次波長結構之穿透與散射特性zh_TW
dc.titleFinite-Difference Time-Domain Analysis of Transmission and Scattering from Subwavelength Structuresen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,蔡定平,鄧君豪
dc.subject.keyword有限差分時域法,次波長元件,金屬薄膜,光柵,繞射,&#63842,常光學透射,zh_TW
dc.subject.keywordFinite-Difference Time-Domain Analysis,subwavelength structures,metal thin film,gratings,diffraction,extraordinary optical transmission,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
7.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved