Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29453
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.author"Lin, Yu-Hsiang"en
dc.contributor.author林鈺翔zh_TW
dc.date.accessioned2021-06-13T01:07:30Z-
dc.date.available2007-07-27
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation1. K.E. Crompton , J.D. Goud and R.V. Bellamkonda , “Polylysine-functionalished thermoresponsive chitosan hydrogel for neural tissue engineering”, Biomaterial , 28 , 441-449 , 2007
2. F. J. Rodríguez, N. Gómez, G. Perego, & X. Navarro, “ Highly permeable polylactide-caprolactone nerve guide enhance peripheral nerve regeneration through long gaps”, Biomaterials 20, 1489-1500, 1999
3. H. Naito,”Non-anticoagulant hemodialysis using EVAL hollow fiber membrane dialyzer”,Kuraray Co.Ltd.,1982
4. J Chad and Wheal ,“Cellular Neurobiology-A practical approach”,Oxford university press publishing,pp11-15, 1991
5. R.S.CargillⅡ, K.C.Dee,and S.Malcolm,“An assessment of the strength of NG108-15 cell adhesion to chemically modified surface”,Biomaretials 20, 2417-2425, 1999
6. 楊台鴻, “乙烯-乙烯醇共聚合體造膜機構之探討”, 博士論文, 台大化工所, 1991
7. H. Strathmann, “Membrane separation processes”, J. Membrane Sci. 9, 121-189, 1981
8. R. E. Kesting, “Synthetic polymeric membrane”, John Wiley and Sons, New York, 1985
9. Y. S. Chen, C. L. Hsieh, C. C. Tsai, T. H. Chen, W. C. Cheng, C. L. Hu, & C. H. Yao, “Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin, & fibronectin”, Biomaterials 21, 1541-1547, 2000
10. S. Woerly, & D. J. Morassutti, “New aspects of neuroplantation”, Neurosurg Rev 16, 93-104, 1993
11. S. T. Carbonetto, & M. M. Gruver, “Nerve fiber growth on defined hydrogel substrates”, Science 216, 897-899, 1982
12. R. Vellamkonda, J. P. Raneri, N. Bouche, & P. Arbischer, “Hydrogel -based three-dimensional matrix for neural cell”, J. Biomed. Mater. Res. 29, 663-671, 1995
13. P, Aebischer, R. F. Valentini, P. Dario, C. Domenici, & P. M. Galletti, “Piezoelectric guidance channels enhance regeneration in the mouse sciatic nerve after axotomy”, Brain Res. 436,165-168, 1987
14. W. F. A. Dunnen, B. V. D. Lei, J. M. Schakenraad, I. Stokroos, A. J. Pennings, & P. H. Robinson, “Long-term evaluation of nerve regeneration in a biodegradable nerve guide”, Microsurg. 14, 508-515, 1993
15. M. Borkenhagen, R. C. Stoll, P. Neuenschwander, U. W. Suter, P. Aebischer, “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel”, Biomaterials 19, 2155-2165, 1998
16. S. Woerly, & R. Marchand, “Intracerebral implantation of synthetic polymer/biopolymer matrix: a new perspective for brain repair”, Biomaterials 11, 97-107 1990
17. Harsch, J. Calderon, R. B. Timmons, G. W. Gross, “Pulsed plasma deposition of allyamine on polysiloxane: a stable surface for neuronal cell adhesion”, J. Neurosci. Meth. 98, 135-144, 2000
18. K. K. Chittur, “Surface techniques to examine the biomaterial-host interface: an introduction to the papers”, Biomaterials 19, 301-305, 1998
19. S. Blawas & W. M. Reichert, “Protein patterning”, Biomaterilas 19, 595-609, 1998
20. S. Jo & K. Park, “Surface modification using silanated poly(ethylene glycol)s”, Biomaterials 21, 605-616, 2000
21. F. L. Christina, J. Patric, & B. Wesslen, “Polyurethane surfaces modified by amphiphilic polymers: effects on protein adsorption”, Biomaterials 21, 307-315, 2000
22. K. D. Park, Y. S. Kim, D. K. Han, Y. H. Kim, E. H. B. Lee, H. Suh, & K. S. Choi, “Bacterial adhesion on PEG modified polyurethane surfaces”, Biomaterials 19, 851-859, 1998
23. V. Stolc & J. Podoba, “A water-insoluble trypsin derivative and its use as a trypsin column”, Nature 188, 856-857, 1960
24. H. H. Weetall, “Trypsin and papain covalently coupled to porous glass: preparation and characterization”, Science 166, 615-617, 1969
25. W. Marconi, F. Benvenuti, & A. Piozzi, “Covalent bonding of heparin to a vinyl copolymer for biomedical application”, Biomaterials 18, 885-890, 1997
26. P. J. Ranieri, R. Bellamkonda, E. J. Bekos, T. G. Vargo, J. A. Gardella, & P. Aebischer, “Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II”, J. Biomed. Mater. Res. 29, 779-785, 1995
27. M. Yamamoto, K. Kato, & Y. Ikada, “Ultrastructure of the interface between cultured osteoblasts and surface-modified polymer substrates”, J. Biomad. Mater. Res. 37, 29-36, 1997
28. J. A. Neff, K. D. Caldwell, & P. A. Tresco, “A novel method for surface modification to promote cell attachment to hydrophobic substrates”, J. Biomed. Mater. Res. 40, 511-519, 1998
29. J. A. Rowley, G. Madlambayan, & D. J. Monney, “Alignate hydrogels as synthetic extracellular matrix materials”, Biomaterials 20, 45-53, 1999
30. M. Zhang, T. Desai, & M. Ferrari, “Proteins and cells on PEG immobilized silicon surfaces”, Biomaterials 19, 953-960, 1998
31. R. I. Freshney, “Culture of animal cells”, pp 71-104 Wiley Liss, Inc., New York, 1994
32. Kondoh, K. Makino, & T. Matsuda, “Two-dimensional artificial extracellular matrix: bioadhesive peptide-immobilized surface design”, J. Appl. Polym. Sci. 47, 1983-1988, 1993.
33. K. Mann, A. T. Tsai, T. Scott-Burden, & J. L. West, “Modification of surfaces with cell adhesion peptides alters extracellular matrix deposition”, Biomaterials 20, 2281-2286, 1999
34. J. A. Neff, P. A. Tresco, K. D. Caldwell, “Surface modification for controlled studies of cell-ligand interactions”, Biomaterials 20, 2377-2393, 1999
35. D. Beyer, M. Matsuzawa, A. Nakao, & W. Knoll, “Thin polymer layers as supports for hippocampal cell cultures”, Langmuir 14, 3030-3035, 1998
36. Y. Iwasaki, S. I. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, & K. Ishihara, “The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface”, Biomaterials 20, 2185-2191, 1999
37. D. Kleinfeld, K. H. Kahler, & P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates”, J. Neurosci 8, 4098-4120, 1988
38. Lochter, J. Taylor, K. H. Braunewell, J. Holm, & M. Schachner, “Control of neuronal morphology in vitro: interplay between adhesive substrate forces and molecular instruction”, J. Neurosci. Res. 42, 145-158, 1995
39. Annalisa La Gatta ,Alfredo De Rosa , & Chiara Schiraldi “A Novel
Injectable Poly(e-caprolactone)/Calcium Sulfate System for Bone
Regeneration: Synthesis and Characterization “ Macromol. Biosci.
5, 1108–1117 , 2005
40. Cheal Kim, eddy G. Traylor, nd Charles L. Perrin “MCPBA
Epoxidation of Alkenes: Reinvestigation of Correlation etween
Rate and Ionization Potential“J. Am. Chem. Soc, 120, 9513-9516 ,
1998
41. F. R. De Risi , L. D’ilario , and A. Martinell “Synthesis and
Characterization of Epoxidized olybutadiene/Polyaniline Graft
Conducting Copolymer” Journal of Polymer Science: Part A:
Polymer Chemistry, Vol. 42, 3082–3090 , 2004
42. Satoshi Kiyohara , Masami Sasaki , and Takanobu Sugo “Amino
acid addition to epoxy-group-containing polymer chain grafted
onto a porous membrane “ Journal of Membrane Science 109 ,
87-92 ,1996
43. Yi Li , Fei Xiao , and C. P. Wong “ Novel Curing Agent for
Lead-Free Electronics : Amino Acid “ Journal of Polymer
Science: Part A:”Polymer Chemistry , Vol. 44 , 1020-1027 , 2006
44. Heather M. Powell and Steven T. Boyce “EDC cross-linking
improves skin substitute strength and stability” Biomaterials
27,5821-5827,2006
45. Aurore Schneider , Gregory Francious and Rodolphe Obeid “
Polyelect -rolyte Multilayer with a Tunable Young’s Modulus :
Influence of Film Stiffness on Cell Adhesion” Langmuir
22,1193-1200 , 2006
46. Masashi Miwa, Akira Nakajima, Akira Fujishima, Kazuhito
Hashimoto, Toshiya Watanabe, “Effects of the surface roughness on
sliding angles of water droplets on superhydrophobic surface,”
Langmuir 16, 5754-5760, 2000
47. John P. LaFemina, “Surface analytical techniques for probing
biomaterial processes,” Edited by John Davies et al., CRC Press,
Inc. Boca Raton, USA, 1996
48. Donald L. Pavia, Gary M. Lampman, George S. Kriz, “Introduction
to spectroscopy,” Harcourt, Inc. ,Orlando, 2001
49. Chittur, k. k., “FTIR/ATR for protein adsorption to biomaterial
surfaces,” Biomaterials, 19 , 357-369 , 1998
50. Christian Geismann, Mathias Ulbricht, “Photoreactive
Functionalization of Poly(ethylene terephthalate) Track-Etched
Pore Surfaces with Smart Polymer Systems”, Lehrstuhl fu¨r
Technische Chemie II, Universita¨t Duisburg-Essen, D-45117 Essen,
Germany
51. C. Volonte, M. T. Ciotti, & L. Battistini, “Development of a method
for measuring cell number: Application to CNS primary neuronal
cultures”, Cytometry 17, 274-276, 1994
52. H. S. Benjamin, L. Li, & P. Yoon, “Thymic peptide protects
vascular endothelial cells from hydrogen peroxide-induced
oxidant injury”, Life. Sci. 52, 1787-1796, 1993
53. J. Y. Koh & D. W. Choi, “Quantitative determination of glutamate
mediated cortical neuronal injury in cell culture by lactate
dehydrogenase efflux assy”, J. Neurosci. Methods 20, 83-90, 1987
54. Oliver C. Wells, “Scanning electron microscopy,” McGraw-Hill, Inc.,
USA
55. R. S. Cargill II, K. C. Dee and S. Malcolm, “An assessment of the
strength of NG108-15 cell adhension to chemically modified
surfaces”,Biomaterials 20 ,2417-2425,1999
56. G. J. Brewer , S. Deshmane and E. Ponnusamy,“Precocious axons
and improved survival of rat hippocampal neurons on
lysine-alanine polymer substrates”, J. Neurosci. Meth. 85 ,13-20 ,
1998
57. S. Varon , “The culture of chick embryo dosal root ganalionic cells
on polylysine-coated plastic” , Neuronchem. Res. 4 ,155-173 1979
58. Andrade JD, and Hlady V “Protein adsorption and materials
biocompatibility : a tutorial review and suggested hypotheses” , Adv
Polym Sci ,79 , 1-63 , 1986
59. S. P. Massia and J. A. Hubbell , “Immobilized amines basic amino
acids as mimetic heparin-binding domains for cell surface
proteoglycanmediated adhesion” J. Bio. Chem. 267, 10133-10141 ,
1992
60. S. Lakarad , G. Herlem and A. Propper , “Adhesion and
proliferation of cells on new polymers modified biomaterials” ,
Bioelectro-chemistry,62 ,19-27 ,2004
61. Menko AS and Boettiger D. “Occupation of the extracellular
matrixreceptor, integrin,is a control point for myogenic
differentiation” ,Cell ,51 , 51-7 ,1987
62. Streuli CH, Bailey N and Bissell MJ “Control of mammary
epithelial differentiation : membrane induce tissue-specific gene
expression in the absence of cell-cell interaction and morphologic-
al polarity” , J Cell Biol ,115,1383-95 , 1991
63. Lorcan T. Allen , Miriam Tosetto and Ian S. Miller “Surface-induced
changes in protein adsorption and implications for cellular
phenotypicresponses to surface interaction” , Biomaterials ,
27 ,3096-3108 ,2006
64. Motomu Tanaka , Stefan Kaufmann and Julia Nissea “Orientation
selective immobilization of human erythrocyte membranes on
ultrathin cellulose films” Phys. Chem. Chem. Phys., 3,
4091-4095,2001
65. Anne L. Calof and Arthur D. Lander “Relationship between
Neuronal Migration and Cell-Substratum Adhesion:Laminin and
Merosin promote Olfactory Neuronal Migration but are
Anti-Adhesive” ,The Journal of Cell biology,115,779-794 , 1991
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29453-
dc.description.abstract本實驗是以乾式法將高分子乙烯乙烯醇(EVAL)聚合物製成薄膜之後,用化學改質的方式將表面氫氧基(-OH)接枝甲基丙烯醯氯(MAC)以間位氯化過氧苯酸(mCPBA)將烯烴雙鍵上進行環氧化反應化後接枝離胺酸(L-lysine)單體和各式不同碳鏈的雙胺。並且將接枝離胺酸(L-lysine)後的薄膜用碳化二亞胺(EDC)修飾離胺酸上的羧酸基接上丁二胺,並利用FT-IR以及接觸角變化分析薄膜改質前後差異和Orange II salt定量膜材表面胺基(-NH2)之接枝密度。
同時利用體外細胞培養的方法,來探討材料與細胞之間的生物適合性,將改質前以及改質後的薄膜培養小鼠初代顆粒型神經細胞,以MTT測試來比較細胞的活性並且用光學顯微鏡和掃描式電子顯微鏡來觀察細胞貼附在接枝不同碳鏈的二胺、離胺酸以及經丁二胺修飾之離胺酸並和塗佈聚離氨酸(poly-D-lysine)的乙烯乙烯醇薄膜做比較。
小鼠顆粒型神經細胞培養於接枝在經丁二胺修飾過後的lysine其細胞活性表現優於EVAL塗佈聚離胺酸薄膜更勝於未改質薄膜,效果比接枝雙胺類更能提升神經細胞粒線體活性。
zh_TW
dc.description.abstractWe prepare poly(ethylene-co-vinyl alcohol)(EVAL) membranes by the dry processing ,and then grafted methacryloyl chloride (MAC)on the hydroxyl group of these membrane surface by the way of chemical modification.Furthermore, we grafted different diamines, lysine and modified lysine with 1,4-diaminobutane by EDC/NHS method on them.
We used FT-IR and contact angle to assay the material properties after modification then quantification the surface grafted density by orange II salt.
We cultured the cerebellar granule neurons of the Wistar rat on the modified membranes and compared with the relative activity by MTT assays. In addition, the cell morphology was observed by optical microscope and scanning electron microscope (SEM).
The modification of the EVAL with lysine modified 1, 4-diamino -butane, in general, have better relative activity than coating PDL. We observe this method could effectively induce the growth of neuron cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:07:30Z (GMT). No. of bitstreams: 1
ntu-96-R94548035-1.pdf: 4397896 bytes, checksum: e1525a30ad91c83925913df4eb856f65 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖表目錄 VII
第1章 緒論 1
第2章 文獻回顧 3
2-1高分子薄膜 3
2-1-1高分子薄膜定義 3
2-1-2高分子薄膜結構 3
2-1-3薄膜的製備 3
2-2神經細胞培養 4
2-2-1神經系統簡介 5
2-2-2培養神經細胞用途 6
2-2-3影響神經細胞生長因素 7
2-3薄膜改質 8
2-3-1改質簡介 8
2-3-2材料表面改質與細胞生長的關係 9
第3章 實驗材料與方法 11
3-1實驗架構 11
3-2試藥原料 11
3-3儀器 13
3-4試藥配置 18
3-5薄膜製備 21
3-5-1EVAL薄膜製備 21
3-5-2薄膜表面改質 21
3-5-2-1EVAL高分子薄膜接枝不同碳數雙胺和離胺酸單體 21
3-5-2-2 丁二胺修飾接枝離胺酸之EVAL高分子薄膜 22
3-6薄膜表面親疏水性質 26
3-7材料表面化學鑑定 27
3-7-1衰減全反射式傅立葉紅外光譜儀(ATR-FTIR) 27
3-8薄膜表面接枝雙胺量分析 27
3-9神經細胞培養 28
3-9-1薄膜前處理 28
3-9-2塗佈聚離胺酸 28
3-9-3初代細胞培養(primary cell culture)步驟 29
3-9-4 MTT測試評估神經細胞生長情形 30
3-10 電子顯微鏡 30
3-10-1細胞固定 31
3-10-2零界點乾燥 32
3-10-3樣本鍍金 33
第4章 結果與討論 34
4-1薄膜表面改質材料分析 34
4-1-1衰減全反射傅立葉紅外光譜儀(ATR-FTIR)分析 34
4-1-2薄膜表面接枝雙胺量分析 35
4-1-3薄膜表面親疏水性 36
4-2小鼠顆粒型神經細胞培養 37
4-2-1 EVAL接枝各式雙胺、離胺酸、修飾羧酸基之離胺酸細胞活性MTT測試 37
4-2-2神經細胞在不同材料的光學顯微鏡和電子顯微鏡(SEM)照片, 39
4-2-3神經細胞在不同材料的光學顯微鏡照片,細胞密度 2.5 x 105 cells/cm2。 40
第5章 結論 42
第6章 參考文獻 43
附錄 51
圖3-2 EVAL薄膜化學改質流程圖 23
圖3-3 EVAL接枝雙胺類和離胺酸單體之步驟 24
圖3-4 EVAL接枝丁二胺修飾離胺酸之步驟 25
圖3-5 接觸角示意圖 26
圖1-1 EVAL薄膜改質接枝不同胺基示意圖 54
圖3-1 實驗流程圖 54
圖3-6 初代小腦顆粒型神經細胞動物實驗步驟 56
圖4-1. EVAL接枝甲基丙烯醯氯(MAC)對時間(t)吸收強度 56
圖4-2. EVAL改質前後之ATR-FTIR圖 57
圖4-3. EVAL接枝不同胺類之ATR-FTIR圖 57
圖4-4各種改質EVAL薄膜培養小腦顆粒型神經細胞MTT測試結果 60
圖 4-5 顆粒型神經細胞初代培養第一天之光學顯微鏡照片;200x。 61
(a).EVAL,(b). PDL,(c). E-Lysine,(d). E-Ly-1, 4-diaminobutane 61
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 62
(g).E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane, 62
圖 4-7顆粒型神經細胞初代培養第一天之光學顯微鏡照片;200x。 62
(i).E-1, 5-diaminohexane 62
圖 4-8 顆粒型神經細胞初代培養第三天之光學顯微鏡照片;200x。 63
(a).EVAL,(b). PDL,(c). E-Lysine,(d). E-Ly-1, 4-diaminobutane 63
圖 4-9 顆粒型神經細胞初代培養第三天之光學顯微鏡照片;200x。 64
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 64
(g).E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane 64
圖 4-10 顆粒型神經細胞初代培養第三天之光學顯微鏡照片;200x。 64
(i).E-1, 5-diaminohexane 64
圖 4-11 顆粒型神經細胞初代培養第五天之光學顯微鏡照片;200x。 65
(a).EVAL,(b). PDL,(c). E-Lysine,(d). E-Ly-1, 4-diaminobutane 65
圖 4-12 顆粒型神經細胞初代培養第五天之光學顯微鏡照片;200x。 66
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 66
(g).E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane, 66
圖 4-13 顆粒型神經細胞初代培養第五天之光學顯微鏡照片;200x。 66
(i).E-1, 5-diaminohexane 66
圖 4-14 顆粒型神經細胞初代培養第一天之SEM照片;500x。 68
(a). EVAL,(b). PDL,(c). E-Lysine,(d). E-Ly-1,4-diaminobutane, 68
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 68
(g). E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane, 68
(i). E-1, 5-diaminohexane 68
圖 4-15 顆粒型神經細胞初代培養第三天之SEM照片;500x。 70
(a).EVAL,b. PDL,(c). E-Lysine,(d). E-Ly-1, 4-diaminobutane, 70
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 70
(g).E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane, 70
(i).E-1, 5-diaminohexane 70
圖 4-16 顆粒型神經細胞初代培養第三天之SEM照片;500x。 72
(a).EVAL,(b). PDL,(c). E-Lysine,(d). E-Ly-1, 4-diaminobutane, 72
(e).E-1, 2-diaminoethylene,(f). E-1, 3-diaminopropane, 72
(g).E-1, 4-diaminobutane, (h). E-1, 5-diaminopetane, 72
(i).E-1, 5-diaminohexane 72
圖4-17小腦顆粒型神經細胞培養在EVAL。 73
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 73
(d) 7 DIV _ 200x 73
圖4-18小腦顆粒型神經細胞培養在EVAL-PDL 。 74
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 74
(d) 7 DIV _ 200x 74
圖4-19小腦顆粒型神經細胞培養在EVAL-Ly 。 75
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 75
(d) 7 DIV _ 200x 75
圖4-20小腦顆粒型神經細胞培養在EVAL-diaminobutane 。 76
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 76
(d) 7 DIV _ 200x 76
圖4-21小腦顆粒型神經細胞培養在EVAL-diaminoethylene 。 77
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 77
(d) 7 DIV _ 200x 77
圖4-22小腦顆粒型神經細胞培養在EVAL-diaminopropane 。 78
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 78
(d) 7 DIV _ 200x 78
圖4-23小腦顆粒型神經細胞培養在EVAL-diaminobutane 。 79
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200x、(c) 7 DIV _ 100x、 79
(d) 7 DIV _ 200x 79
圖4-24小腦顆粒型神經細胞培養在EVAL-diaminopantane 。 80
(a)1 DIV _ 200x 、(b) 7 DIV _ 200x 80
圖4-25小腦顆粒型神經細胞培養在EVAL-diaminohexane 。 80
(a.) 1 DIV _ 100X、(b) 1 DIV _ 200X、(c) 7 DIV _ 100X、 80
(d) 7 DIV _ 200x 80
圖4-26小腦顆粒型神經細胞培養在各種改質材料第25天 81
(a)EVAL、(b)E-PDL、(c)E-Ly、(d)E-Ly-diamine(4) 、(e)E-diamine(2) 、 81
(f)E-diamine(3) 、(g)E-diamine(4) 、(h)E-diamine(5) 、(i)E-diamine(6) 81
表4-1 ATR-FTIR光譜吸收峰 34
表4-2不同濃度之OrangeⅡ於479nm的UV光之校正曲線 58
表4-3 EVAL薄膜接枝雙胺量之分析 58
表4-4接枝各式雙胺之EVAL薄膜表面接觸角 59
dc.language.isozh-TW
dc.subject聚離胺酸zh_TW
dc.subject聚乙烯乙烯醇zh_TW
dc.subject小腦顆粒神經細胞zh_TW
dc.subject甲基丙烯醯氯zh_TW
dc.subject間位氯zh_TW
dc.subject化過氧苯酸zh_TW
dc.subject碳化二亞zh_TW
dc.subjectcerebellar granule cellsen
dc.subjectlysineen
dc.subjectEVALen
dc.subject4-diaminobutaneen
dc.subjectPDLen
dc.subjectEDCen
dc.subjectmethacryloyl Chlorideen
dc.title利用聚乙烯乙烯醇薄膜接枝雙胺探討其對神經元細胞之影響zh_TW
dc.titleThe Study of the Behavior of Neurons Cultured on EVAL
Membranes Modified With Diamines
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋信文,謝松蒼
dc.subject.keyword聚乙烯乙烯醇,小腦顆粒神經細胞,甲基丙烯醯氯,間位氯,化過氧苯酸,碳化二亞,聚離胺酸,zh_TW
dc.subject.keywordcerebellar granule cells,methacryloyl Chloride,EDC,PDL,1,4-diaminobutane,EVAL,lysine,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved