Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓
dc.contributor.authorHsiao-Ting Tzengen
dc.contributor.author曾筱婷zh_TW
dc.date.accessioned2021-06-13T01:06:56Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-21
dc.identifier.citationAllaoui A, Bai S, Cheng HM , Bai JB. Mechanical and electrical properties of a MWNT/Epoxy Composite” Composites Science and Technology. 2002;62: 1993–1998
Anic I, Shirasuka T, Matsumoto K. Scanning electron microscopic evaluation of two compaction techniques using a composite resin as a root canal filling material. J Endod. 1995;21:594-598.
Antonucci JM, Toth EE. Extent of polymerization of dental resins by differential scanning calorimetry”J. Dent. Res. 1981;62,121-125.
Chaudhary S, Kim JH, Sigh KV, Ozkan M. Fluorescence microscopy visualization of single-walled caron nanotubes using semiconductor nanocrystals. Nanoletters 2004;4:2415-2419
Chowdhury FH, Hosur MV, Jeelani S. Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates. Materials Science and Engineering: A 2006;421(1-2): 298-306.
Cooper CA, Young RJ, Halsall M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos Part A Appl Sci Manuf. 2001;32:401–11.
De Clerck JP. Microwave polymerization of acrylic resins used in dental prostheses. J Prosthet Dent. 1987;57(5):650-8.
Dyer SR, Lassila LV, Jokinen M, Vallittu PK. Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dental Materials 2004;20: 947-955.
Diamond M. Resin fiberglass bonded retainer. J Clin Orthod. 1987;21(3):182-3.
Elliott JE, Lovell LG, Bowman CN. Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dent Mater 2001;17:221-9.
Fujimori Y, Kaneko T, Kaku T, Yoshioka N, Nishide H ,Tsuchida E Polymerization and photoinitiation behaviour in the light cured dental composite resin. Polymer Advances in Technology 1992;3: 437.
Feilzer AJ, Dauvillier BS. Effect of TEGDMA/BisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites. J Dent Res. 2003;82:824-8.
Freedman GA. Esthetic post-and-core treatment. Dent Clin North Am. 2001 45: 103-16.
Gibson RF. Principles of Composite Material Mechanics, McGraw-Hill, Inc., New York 1994
Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K. Surface modified multiwalled carbon nanotubes in CNT/epoxy-composites. Cem Phys Lett 2003; 370(5–6): 820–4
Grave AM, Chandler HD, Wolfaardt JF. Denture base acrylic reinforced with high modulus fiber” Dent Mater. 1985; 1:185-7.
Hao Fong, Dickens SH, Glenn MF. Evaluation of dental restorative composites containing polyhedral oligomeric silsesquioxane methacrylate. Dental Materials 2005; 21:520–529.
Haque A, Shamsuzzoha M, Hussain F, Dean D. S2-Glass/Epoxy Polymer Nanocomposites: Manufacturing, Structures,Thermal and Mechanical Properties. Journal of Composite Materials 2003;37: 1821-1837.
Hussain M., Nakahira A., Niihara K. Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion. Materials Letters 1996; 26: 185-191.
Isidor F, O¨dman P, Brondum K. Intermittent loading of teeth restored using prefabricated carbon fiber posts. Int J Prosthod 1996;9:131—6.
Jakubiak J, Allonas X, J. Fouassier P, Sionkowska A, Andrzejewska E, Linden LA Rabek JF. Camphorquinone–amines photoinitating systems for the initiation of free radical polymerization. Polymer 2003;44: 5219-5226
Jancar J, Wang W, Dibenedetto AT. On the heterogeneous structure of thermally cured Bis-GMA/TEGDMA resins. J. of Materials Science: Material in edicine 2000;11:675-682
Kennedy KC, Kusy RP. Investigation of dual-staged polymerization and secondary forming of photopultruded, fiber-reinforced, methacrylate-copolymer composites. J Biomed Mater Res. 1998;41:549-59
Kornmann X, Rees M, Thomann Y, NecolaA, Barbezat M, Thomann R. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. composites science and technology 2005;65: 2259-2268.
Lau AK, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites Composite part B: engineering 2002;33: 263-277
Leu CM, Chang YT, Wei KH. Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine. Macromolecules 2003;36; 9122-9127.
Levenson MF. The use of a clear, pliable film to form a fiberglass-reinforced splint. J Am Dent Assoc. 1986;112:79-80
Liao YH, Tondin OM, Zhiyong Liang, Zhang C, Wang B. Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Materials Science and engineering A 2004;385:175–181
Li QQ, Zaiser M ,Koutsos V. Carbon nanotube/epoxy resin composites using block copolymer as a dispersing agent. 2004; Phys Status Solidi, a-App Res. 35:67-74.
Lin Yi, Apparao M. Rao, Sadanadan B, Kenik EA, Sun YP. Functionalizing Multiple-Walled Carbon Nanotubes with Aminopolymers. J. Phys. Chem.B 2002; 106:1294-1298
Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins. Dental Materials 2001;17:221-229.
Lui JL. Composite resin reinforcement of flared canals using light-transmitting plastic posts. Quintessence Int. 1994;25:313-319.
Maffezzoli A, Terzi R, and Nicolais L. Cure behavior of visible light activated dental composites. I. Isothermal kinetics. J. Mater. Sci. Mater. Med. 1995;6, 155–160.
Malquarti G, Berruet RG, Bois D. Prosthetic use of carbon fiber-reinforced epoxy resin for esthetic crowns and fixed partial dentures. J Prosthet Dent. 1990; 63: 251-7.
Mark E. Cohen, Daniel L. Leonard, David G. Charlton, Howard W. Roberts and James C. Ragain. Statistical estimation of resin composite polymerization sufficiency using microhardness. Dent Mater. 2004; 20:158-66.
Moniruzzaman M, Winey KI. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006; 39:5194 -5205
Nikolaos SK, Martens LC, Ronald MH. Relative curing degree of polyacid-modified and conventional resin composites determined by surface Knoop hardness. Dent Mater 2006;22:1045-50.
O’Connell MJ, Bachilo SM, Huffman CB, Moore VC. Band Gap Flourescence from Individual Single-Walled Carbon Nanotubes. Science 2002; 297:593-597.
Ogasawara T, Ishida Y, Ishikae T. Characterization of multiwalled carbon nanotube/phenylethynyl terminated polyimide composites. Compos Part A : App Sci Manut 2004;35:67-74
Phlillips, R. 1977. 牙科材料學 高資彬 翁秀和 譯 . 合記圖書出版社, 1st Edition.
Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 2000;76:2868.
Qian D, Liu WK, Ruoff RS. Load transfer mechanism in carbon nanotube ropes. Compos Sci Technol 2003;63:1561–9.
Rueggeberg A, Hashinger DT, Fairhust CW. Calibration of FTIR conversion analysis of contemporary dental resin composites. Dent. Mater. 1990;6:241–249.
Ruyter IE, Ekstrand K, Bjork N. Development of carbon/graphite fiber reinforced poly (methyl methacrylate) suitable for implant-fixed dental bridges. Dent Mater. 1986;2:6-9.
Iijima S. Helical Microtubules of Graphitic Carbon. Nature.1991;354:56
Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties” Polymer 1999;40:5967-5971
Schroeder WF, Vallo CI. Effect of different photoinitiator systems on conversion profiles of a mo del unfilled light-cured resin. Dent Mater. 2006 Dec 14 [Epub ahead of print]
Schütt A, Bürki G, Schwalle P, Michler J, Cattani LM., Bouillaguet PS. Mechanical Properties of Fibre-Reinforced Dental Composites Subjected toHydrothermal and Mechanical Ageing. European Cells and Materials 2004;7: 55-56.
Sirimai S, Riis DN, Morgano SM. An in vitro study of fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post and core systems. J Prosth Dent 1999;81:262-269.
.
Soares LE, Martin AA, Pinheiro AL, Pacheco MT. Vicker's hardness and Raman spectroscopy evaluation of a dental composite cured by an argon laser and a halogen lamp. J Biomed Opt. 2004;9:601-8 .
Solnit GS. The effect of methyl methacrylate reinforcement with silane-treated and untreated glass fibers. J Prosthet Dent. 1991;66:310-4.
Standlee JP, Caputo AA, Holcomb JP. The dentatus screw:Comparative stress analysis with endodontic dowels designs. J Oral Rehabil 1982;9:23-33.
Thomann, R. Epoxy-Layered Silicate Nanocomposites as Matrix in Glass Fibre-Reinforced Composites. Composites Science and Technology 2005;65: 2259-2268.
Urabe H, Nomura Y, Shirai K, Yoshioka M, Shintani H. “Influence of polymerization initiator for base monomer on microwave curing of composite resin inlays J. Oral Rehabilitation 1999;26:442-446.
Vaidyanathan J, Vaidyanathan TK, Wang Y, Viswanadhan T. Thermoanalytical characterization of visible light cure dental composites. J. Oral Rehab. 1992;19: 49–64
Vallittu PK. Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires. J. Prosthodont. 1996;5:115-21.
Wang S, Adanur S, Jang BZ. Mechanical and Thermo-Mechanical Failure Mechanism Analysis of Fiber/Filler Reinforced Phenolic Matrix Composites. Composites part B: Engineering 1997; 28: 215-231.
Zheng L, Waddon AJ, Farris RJ, CoughlinEB. X-ray Characterizations of Polyethylene Polyhedral Oligomeric Silsesquioxane Copolymers. Macromolecules 2002;35: 2375.
工研院化工所應化組李柱雄正研究員、國立交通大學應化系張豐志教授 “一種新穎性奈米結構材料的發展─多立面倍半矽氧烷寡聚體”工產業技術知識網奈米專欄, 2006 (http://chemtech.e-ipro.com.tw)
王宗櫚,廖瑞章,蔡穎頡,洪紹棟 “以原子轉移自由基聚合法製備含多環芳香基之聚苯乙烯聚合體之研究” 國立高雄大學化學工程及材料工程學系,中國化學學會94年年會
洪昭南.徐逸明,王宏達 “奈米碳管結構及特性簡介” 化工,第49卷, 第一期, p.23-30, 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29433-
dc.description.abstract奈米材料具有特殊機械、光電、化學及熱性質,如何運用在複合材料的改善,在今日是十分受囑目的研究課題。本實驗欲以奈米填料來取代或減少牙科纖維加強複合樹脂根柱中的纖維,並測試材料的性質,以評估其用於於臨床膺復治療的可行性。本研究選擇牙科常見之Bisphenol diglycidyl dimethacrylate (Bis-GMA)與Triethylene glycol dimethacrylate (TEGDMA) 為樹脂基質,在實驗的一開始,以機械強度測試,決定了使用的起始劑種類和用量比例。之後所加入的奈米填料為未修飾的多壁奈米碳管,以及以PMMA和GMA做表面化學修飾的奈米碳管。另一種加入的奈米填料為帶有8個甲基丙烯酸甲酯 (MMA)官能基的多面體矽氧烷寡聚物。最後將玻璃纖維加入含有奈米粒子的樹脂基質,比較這些複合材料的彈性模數,並以電子顯微鏡觀察各種材料之間的界面黏結關係。由三點彎曲測試的結果發現,加入奈米碳管以及多面體矽氧烷寡聚物的樹脂材料,彈性模數並沒有獲得改善,反而隨著奈米粒子的濃度增加而明顯下降。經電子顯微鏡觀察發現奈米碳管即使經過高分子的修飾,仍無法有效增加碳管與樹脂基質之間的作用力,奈米碳管聚集難以分散的問題仍無法突破。而由紅外線光譜儀和微硬度值的測量中發現,多面體矽氧烷寡聚物的含量愈多,複合樹脂材料的聚合程度愈低,可能因此降低了原本樹脂基質有的彈性模數。加入約60%的玻璃纖維,能使樹脂材料的彈性模數增加至20GPa以上,接近牙本質的彈性強度。而從電子顯微鏡的觀察發現,多面體矽氧烷寡聚物的含量增加至10 wt%,則纖維/樹脂複合材料的斷裂模式發生改變,可能是加入足量的奈米粒子能促進樹脂基質與玻璃纖維之間的黏結,將有利於應力的傳導。奈米材料於牙科複合樹脂材的應用上仍有其潛力,必須解決奈米粒子分散不良的問題。至於奈米材料對於纖維及樹脂複合材之間的作用機制,則需更進一步探討。zh_TW
dc.description.abstractAs size of matter is reduced until few nanometers, quantum effects significantly change material's optical, magnetic or electrical properties. The attraction of many researcher for this length scale depend on the different and often enhanced properties of matter compared with the same materials at a larger size. In this study, we mixed different kinds of nanoparticle in dental resin material. The purpose was to evaluate the possibility of decreasing the fraction or replacing the use of the fiber in fiber reinforced composite resin posts.First, the dual-cured initiator system for resin matrix (Bis-GMA + TEGDMA) was decided according to the result of microhardness test. Then, carbon nanotube (CNT) and polyhedral oligomeric Silsesquioxane (POSS) were added into resin matrix separately. Three kinds of carbon nanotube were used: unmodified multi-wall CNT, PMMA-grafted CNT and GMA-grafted CNT. POSS-MA (methacryl-POSS cage mixture) with 8 polymerizable methacrylate groups was chosen as the other nanoparticle filler in this study. In the third part, chopped glass fiber was used as reinforcement of composite.Elastic modulus of these nanoparticle/ fiber reinforced composite resin material was obtained by three point test. The fracture surface of specimens observed under SEM for evaluation of interaction among nanoparticle, glass fiber and resin matrix.
Comparing the result of carbon nanotube/composite resin, the more CNT was added in resin system, the lower the elastic modulus. Results revealed the poor dispersion in all CNT specimens. This study discovered that the functionalized CNT cannot be dissolved nor dispersed through ultrasonic tip vibration. Also, POSS-MA is not beneficial in improvement of mechanical properties probably because of incomplete polymerization. The result of FTIR explained the assumption that as POSS-MA increases, the conversion rate of the polymer decreases. When the weight fraction of glass fiber was up to about 60%, the reinforced composite resin exhibited improved elastic modulus approaching to that of human dentin (about 20 GPa). SEM observation on the failure surface of specimens indicated that the enhanced mechanism is due to the interfacial bonding between the fibers and the surrounding matrix modified by nano-sized filler. As the result, 10wt% of POSS-MA was supposed to improve the stress conduction between the different materials in resin system. The similar tendency not found in the CNT composites might resulted from the tiny amount of CNT and its poor dispersion in resin.
Nano-sized particle has the potential in development of dental composite material, but carbon nanotube should be well dispersed first. The interaction between nanoparticle and fiber, needed to be further investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:06:56Z (GMT). No. of bitstreams: 1
ntu-96-R93422009-1.pdf: 3652090 bytes, checksum: 9d64d15b8a5aa6ac108f09bef5b0d0b3 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要------------------------------------------------------------------------------------------I
abstract--------------------------------------------------------------------------------------------II
目錄----------------------------------------------------------------------------------------------III
圖次----------------------------------------------------------------------------------------------VI
表次----------------------------------------------------------------------------------------------XI
第一章 前言-------------------------------------------------------------------------------------1
第二章 文獻回顧-------------------------------------------------------------------------------4
2-1 奈米複合材料---------------------------------------------------------------------------4
2-2 應用於牙科的奈米複合材料---------------------------------------------------------5
2-3 奈米碳管---------------------------------------------------------------------------------7
2-3-1 奈米碳管的構造與性質----------------------------------------------------------7
2-3-2 奈米碳管表面修飾---------------------------------------------------------------9
2-3-3 奈米碳管聚合物複合材料的製備方法----------------------------------------9
2-3-4 奈米碳管-複和樹脂的機械性質----------------------------------------------10
2-4 多面體矽氧烷寡聚物(POSS)--------------------------------------------------------10
2-4-1 多面體矽氧烷寡聚物材料的發展起源--------------------------------------11
2-4-2 多面體矽氧烷寡聚物的結構與共聚物--------------------------------------11
2-5 纖維--------------------------------------------------------------------------------------13
2-5-1 纖維複合樹脂於牙科的運用--------------------------------------------------14
2-5-2 纖維複合樹脂根柱--------------------------------------------------------------14
2-6 纖維複合樹脂與奈米填料-------------------------------------------------------15
第三章 實驗方法------------------------------------------------------------------------------17
實驗藥品----------------------------------------------------------------------------------------17
實驗儀器----------------------------------------------------------------------------------------20
3-1光聚合壓克力樹脂的合成-起始劑的決定與用量選擇--------------------------22
3-1-1配製樹脂基質-----------------------------------------------------------22
3-1-2 光起始系統配方-----------------------------------------------------------------22
3-1-3 雙起始系统配方-----------------------------------------------------------------22
3-1-3起始劑系統的決定與用量的選擇---------------------------------------------24
3-2 製備含奈米粒子之樹脂材料--------------------------------------------------------25
3-2-1 多壁碳管/樹脂複合材料的製作-----------------------------------------------25
3-2-1-1奈米碳管的分散-------------------------------------------------------------25
3-2-1-2奈米碳管/樹脂材的製作---------------------------------------------------25
3-2-1-3試片製備----------------------------------------------------------------------26
3-2-2 多面體矽氧烷寡聚物/複合樹脂材的製作-----------------------------------26
3-2-2-1 POSS-MA的混合-----------------------------------------------------------26
3-2-2-2 試片製備---------------------------------------------------------------------26
3-3 玻璃纖維/奈米粒子填料複合樹脂材的製作------------------------------------27
3-3-1玻璃纖維/複合樹脂材料的製備-----------------------------------------------27
3-3-2 試片製備--------------------------------------------------------------------------27
3-4 材料性質測試--------------------------------------------------------------------------28
3-4-1 材料熱分析-----------------------------------------------------------------------28
3-4-2 機械性質測試--------------------------------------------------------------------29
3-5 電子顯微鏡觀察---------------------------------------------------------------------30
第四章 結果與討論---------------------------------------------------------------------------31
4-1光聚合壓克力樹脂的合成-起始劑系統之探討-----------------------------------31
4-1-1樹脂基質系統之探討-------------------------------------------------------------31
4-1-2 光起始系統之探討--------------------------------------------------------------31
4-1-2-1光起始系統之聚合程度----------------------------------------------------31
4-1-2-2 光起始系統配方之探討---------------------------------------------------32
4-1-3 硬度測試分析--------------------------------------------------------------------32
4-1-4 雙起始系統之探討--------------------------------------------------------------33
4-2 奈米碳管/樹脂複合材-------------------------------------------------------------------34
4-2-1奈米碳管的分散----------------------------------------------------------------------34
4-2-1-1 分散溶劑探討-------------------------------------------------------------------34
4-2-1-2分散方法探討---------------------------------------------------------------------35
4-2-1-3 碳管表面處理的探討----------------------------------------------------------36
4-2-1-1 SEM 觀察奈米碳管的形態---------------------------------------------------37
4-2-2 奈米碳管複合樹脂之彈性模數--------------------------------------------------37
4-2-3奈米碳管-樹脂基質介面與分散性之探討--------------------------------------38
4-3 POSS-MA/奈米複合樹脂材料----------------------------------------------------------41
4-3-1 POSS-MA/奈米複合樹脂材料觀察-----------------------------------------------41
4-3-2 POSS-MA/奈米複合樹脂材料的機械性質-------------------------------------42
4-3-3 電子顯微鏡觀察--------------------------------------------------------------------43
4-3-4 傅立葉轉換紅外線光譜FTIR-----------------------------------------------------43
4-4 玻璃纖維/奈米粒子填料複合樹脂材-------------------------------------------------44
4-4-1 玻璃纖維/複合樹脂材--------------------------------------------------------------44
4-4-2 玻璃纖維/奈米碳管複合樹脂材--------------------------------------------------44
4-4-3 玻璃纖維/POSS-MA複合樹脂材-------------------------------------------------45
4-4-4 玻璃纖維/奈米碳管/POSS-MA複合樹脂材------------------------------------45
4-4-5 熱重分析-----------------------------------------------------------------------------46
4-4-6 市售玻璃纖維強化樹脂產品的觀察--------------------------------------------46
4-4-7 玻璃纖維/奈米粒子填料複合樹脂材之電子顯微鏡觀察--------------------47
第五章 結論--------------------------------------------------------------------------------------50
第六章 參考文獻--------------------------------------------------------------------------------52
dc.language.isozh-TW
dc.subject彈性模數zh_TW
dc.subject玻璃纖維加強樹脂根柱zh_TW
dc.subject奈米碳管zh_TW
dc.subject多面體矽氧烷寡聚物zh_TW
dc.subjectcarbon nanotubeen
dc.subjectelastic modulusen
dc.subjectFRC posten
dc.subjectPOSS-MAen
dc.title奈米粒子填料與玻璃纖維應用於樹脂根管釘柱之製成zh_TW
dc.titleDevelopment of resin post system reinforced with nano-sized filler and glass fiberen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor王大銘
dc.contributor.oralexamcommittee林俊彬,賴君義
dc.subject.keyword玻璃纖維加強樹脂根柱,奈米碳管,多面體矽氧烷寡聚物,彈性模數,zh_TW
dc.subject.keywordFRC post,carbon nanotube,POSS-MA,elastic modulus,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved