Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29432
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor潘建源
dc.contributor.authorPo-Yuan Shihen
dc.contributor.author施博原zh_TW
dc.date.accessioned2021-06-13T01:06:55Z-
dc.date.available2012-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citationAlbillos, A., A. G. Garcia, et al. (1993). 'omega-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells.' FEBS Lett 336(2): 259-62.
Bahi, N., G. Friocourt, et al. (2003). 'IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis.' Hum Mol Genet 12(12): 1415-25.
Baldelli, P., J. M. Hernandez-Guijo, et al. (2004). 'Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits?' Mol Neurobiol 29(1): 73-96.
Bayer, K. U., E. LeBel, et al. (2006). 'Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B.' J Neurosci 26(4): 1164-74.
Brocke, L., L. W. Chiang, et al. (1999). 'Functional implications of the subunit composition of neuronal CaM kinase II.' J Biol Chem 274(32): 22713-22.
Burgoyne, R. D. (2007). 'Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling.' Nat Rev Neurosci 8(3): 182-93.
Cammarota, M., L. R. Bevilaqua, et al. (2002). 'Participation of CaMKII in neuronal plasticity and memory formation.' Cell Mol Neurobiol 22(3): 259-67.
Clements, M. P., S. P. Rose, et al. (1995). 'omega-Conotoxin GVIA disrupts memory formation in the day-old chick.' Neurobiol Learn Mem 64(3): 276-84.
Colbran, R. J. (2004). 'Targeting of calcium/calmodulin-dependent protein kinase II.' Biochem J 378(Pt 1): 1-16.
Dolmetsch, R. E., K. Xu, et al. (1998). 'Calcium oscillations increase the efficiency and specificity of gene expression.' Nature 392(6679): 933-6.
Few, A. P., N. J. Lautermilch, et al. (2005). 'Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation.' J Neurosci 25(30): 7071-80.
Fox, A. P., M. C. Nowycky, et al. (1987). 'Single-channel recordings of three types of calcium channels in chick sensory neurones.' J Physiol 394: 173-200.
Freir, D. B. and C. E. Herron (2003). 'Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo.' Brain Res 967(1-2): 27-36.
Garcia-Palomero, E., J. Renart, et al. (2001). 'Differential expression of calcium channel subtypes in the bovine adrenal medulla.' Neuroendocrinology 74(4): 251-61.
Garcia, A. G., A. M. Garcia-De-Diego, et al. (2006). 'Calcium signaling and exocytosis in adrenal chromaffin cells.' Physiol Rev 86(4): 1093-131.
Gomez-Ospina, N., F. Tsuruta, et al. (2006). 'The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor.' Cell 127(3): 591-606.
Grabarek, Z. (2006). 'Structural basis for diversity of the EF-hand calcium-binding proteins.' J Mol Biol 359(3): 509-25.
Griffith, L. C. (2004). 'Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions.' J Neurosci 24(39): 8394-8.
Grueter, C. E., S. A. Abiria, et al. (2006). 'L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII.' Mol Cell 23(5): 641-50.
Gruhler, A., J. V. Olsen, et al. (2005). 'Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.' Mol Cell Proteomics 4(3): 310-27.
Hell, J. W., R. E. Westenbroek, et al. (1993). 'Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits.' J Cell Biol 123(4): 949-62.
Hudmon, A., H. Schulman, et al. (2005). 'CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation.' J Cell Biol 171(3): 537-47.
Huxley, H. E. (1969). 'The mechanism of muscular contraction.' Science 164(886): 1356-65.
Ivanina, T., Y. Blumenstein, et al. (2000). 'Modulation of L-type Ca2+ channels by gbeta gamma and calmodulin via interactions with N and C termini of alpha 1C.' J Biol Chem 275(51): 39846-54.
Jeromin, A., D. Muralidhar, et al. (2004). 'N-terminal myristoylation regulates calcium-induced conformational changes in neuronal calcium sensor-1.' J Biol Chem 279(26): 27158-67.
Khanna, R., Q. Li, et al. (2006). 'N type Ca2+ channels and RIM scaffold protein covary at the presynaptic transmitter release face but are components of independent protein complexes.' Neuroscience 140(4): 1201-8.
Kobayashi, T., Y. Yamada, et al. (2007). 'Regulation of Cav1.2 current: interaction with intracellular molecules.' J Pharmacol Sci 103(4): 347-53.
Lee, A., R. E. Westenbroek, et al. (2002). 'Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1.' Nat Neurosci 5(3): 210-7.
Lee, T. S., R. Karl, et al. (2006). 'Calmodulin kinase II is involved in voltage-dependent facilitation of the L-type Cav1.2 calcium channel: Identification of the phosphorylation sites.' J Biol Chem 281(35): 25560-7.
Mikhaylova, M., Y. Sharma, et al. (2006). 'Neuronal Ca2+ signaling via caldendrin and calneurons.' Biochim Biophys Acta 1763(11): 1229-37.
Moosmang, S., N. Haider, et al. (2005). 'Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.' J Neurosci 25(43): 9883-92.
Nelson, M. R. and W. J. Chazin (1998). 'Structures of EF-hand Ca(2+)-binding proteins: diversity in the organization, packing and response to Ca2+ binding.' Biometals 11(4): 297-318.
Normann, C., D. Peckys, et al. (2000). 'Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels.' J Neurosci 20(22): 8290-7.
O'Callaghan, D. W. and R. D. Burgoyne (2003). 'Role of myristoylation in the intracellular targeting of neuronal calcium sensor (NCS) proteins.' Biochem Soc Trans 31(Pt 5): 963-5.
O'Leary, H., E. Lasda, et al. (2006). 'CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing.' Mol Biol Cell 17(11): 4656-65.
Pan, C. Y., H. Lee, et al. (2006). 'Lysophospholipids elevate [Ca2+]i and trigger exocytosis in bovine chromaffin cells.' Neuropharmacology 51(1): 18-26.
Pinard, C. R., F. Mascagni, et al. (2005). 'Neuronal localization of Ca(v)1.2 L-type calcium channels in the rat basolateral amygdala.' Brain Res 1064(1-2): 52-5.
Reid, C. A., J. M. Bekkers, et al. (2003). 'Presynaptic Ca2+ channels: a functional patchwork.' Trends Neurosci 26(12): 683-7.
Rousset, M., T. Cens, et al. (2003). 'Down-regulation of voltage-gated Ca2+ channels by neuronal calcium sensor-1 is beta subunit-specific.' J Biol Chem 278(9): 7019-26.
Stojilkovic, S. S. (2005). 'Ca2+-regulated exocytosis and SNARE function.' Trends Endocrinol Metab 16(3): 81-3.
Turner, T. J., M. E. Adams, et al. (1993). 'Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release.' Proc Natl Acad Sci U S A 90(20): 9518-22.
Wang, C. Y., F. Yang, et al. (2001). 'Ca(2+) binding protein frequenin mediates GDNF-induced potentiation of Ca(2+) channels and transmitter release.' Neuron 32(1): 99-112.
Weiss, J. L., D. A. Archer, et al. (2000). 'Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells.' J Biol Chem 275(51): 40082-7.
West, A. E., W. G. Chen, et al. (2001). 'Calcium regulation of neuronal gene expression.' Proc Natl Acad Sci U S A 98(20): 11024-31.
Wheeler, D. B., A. Randall, et al. (1994). 'Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission.' Science 264(5155): 107-11.
Wingard, J. N., J. Chan, et al. (2005). 'Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels.' J Biol Chem 280(45): 37461-70.
Wu, Y. Q., X. Lin, et al. (2001). 'Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily.' Mol Genet Metab 72(4): 343-50.
Wykes, R. C., C. S. Bauer, et al. (2007). 'Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells.' J Neurosci 27(19): 5236-48.
Yao, J., L. A. Davies, et al. (2006). 'Molecular basis for the modulation of native T-type Ca2+ channels in vivo by Ca2+/calmodulin-dependent protein kinase II.' J Clin Invest 116(9): 2403-12.
Zhou, H., K. Yu, et al. (2005). 'Molecular mechanism for divergent regulation of Cav1.2 Ca2+ channels by calmodulin and Ca2+-binding protein-1.' J Biol Chem 280(33): 29612-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29432-
dc.description.abstractCalneuron具有兩個可以和鈣離子結合的EF-hand motif,且在其C端有一段疏水性的結構。本論文中,我們利用PCR技術選殖出大鼠的calneuron,並將其表現在HEK293t細胞中,發現分布位置主要是在細胞膜附近;而缺乏疏水性C-端的變異(Calzh_TW
dc.description.abstractCalneuron has a structure similar to calmodulin-like proteins but has only two conserved N-terminal EF-hand motifs and an extent C-terminal hydrophobic tail. The expression of calneuron was specific in neuronal tissues and higher in adult than in fetal rat cortex. When expressed in HEK293t cells, calneuron was localized at the plasma membrane, but changed to the cytosol for the mutant without the C-terminal hydrophobic tail (Calen
dc.description.provenanceMade available in DSpace on 2021-06-13T01:06:55Z (GMT). No. of bitstreams: 1
ntu-96-R94b41022-1.pdf: 2308495 bytes, checksum: b1aa90a6ad59267e2a2594179ae4f0d7 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsI. ABSTRACTS
I.1 English abstract………………………………………………………………...1
I.2 Chinese abstract………………………..………………………………………3
II. INTRODUCTION
II.1 Voltage-gated calcium channels……………………………………………….4
II.2 Calcium-binding protein family…………………………….………………...6
II.3 SCY-1 like protein is predicted as Serine/Threonine protein kinase.................8
II.4 CaMKII is important in neuronal functions.………………………………….9
II.5 Our aims………………………………………………………………….…..11
III. METHODS AND MATERIALS
III.1 Chemicals and reagents……………………………………...………….......12
III.2 Solutions………………………………………………………………….…14
III.3 RNA extraction and cDNA synthesis.............................................................17
III.4 Polymerase chain reaction and agarose gel electrophoresis...…………..…..18
III.5 TA cloning…………………………………………………………………..18
III.6 Plasmid purification………………………………………………………...19
III.7 Expression vector construction……………………………………………..19
III.8 Primary bovine chromaffin cell culture……………………………………..19
III.9 Transient expression………………………………………………………...20
III.10 Fluorescent imaging…………………………………………………….....21
III.11 Calcium imaging……………...……………………………………………22
III.12 Electrophysiology………………………………………………………….23
III.13 Yeast small scale transformation..………………………………………....24
III.14 Western immunoblot analysis………………………………………….......24
III.15 3-AT selection………………………….……………………………….….25
III.16 Yeast large scale library transformation.…………………………………..25
III.17 Yeast plasmid purification………………………………………………....26
III.18 Yeast colony identification………………………………………………...27
III.19 Data analysis…………………………………………………………….…27
IV. RESULTS
IV.1 Calneuron is highly homologous to other CaBPs……………………...........28
IV.2 Calneuron has two functional EF-hand motifs and a hydrophobic C-terminal…………………………………………………………………..28
IV.3 Calneuron is a neuron-specific protein………………………...…………....29
IV.4 Calneuron is a membrane-associated protein……………………….………29
IV.5 Calneuron attenuates the depolarization-evoked calcium signaling response………………………………………………………………….....30
IV.6 Calneuron inhibits the calcium but not sodium currents………………........31
IV.7 Calneuron does not change the kinetics of sodium currents…………….......32
IV.8 C-terminal hydrophobic tail is important for calcium current modulation….33
IV.9 Calneuron inhibits N-type calcium currents…..……………………...…….34
IV.10 Effects of calneuron are not the influences of fusion protein..………...….35
IV.11 Calneuron inhibits activation and inactivation of L-type calcium current instead of amplitude……………………………………………..................36
IV.12 L-type calcium current is major component of remained calcium currents in chromaffin cells…………………………………………………….............37
IV.12 L-type calcium current is major component of remained calcium currents in
chromaffin cells 37
IV. 13 Calneuron may interact with CaMKJIf3 and SCY- 1 like proteins 38
IV. 14 Interactions are not shared by other CaM-like proteins 39
IV.15 Calneuron shows similar localization with CaMKJIf3 but not CaMKJIa. . .40
V. DISCUSSION
V.1 Calneuron regulates calcium channels activities and signaling
pathway 41
V2 Calcium channel modulation is important for neuron activities 43
V3 Roles of C-terminal hydrophobic tail 45
V.4 Relationship between calneuron and CaMKJIf3 48
V.5 Summary and future directions 50
VI.REFERENCES 51
VII.TABLE 58
VIII.FIGURES 59
dc.language.isoen
dc.titleCalneuron調控鈣離子訊息傳遞的研究zh_TW
dc.titleEffects of Calneuron in Modulating Calcium Signaling Pathwayen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee閔明源,陳建璋,林崇智
dc.subject.keyword鈣離子通道,zh_TW
dc.subject.keywordcalneuron,Ca2+ channel,CaMKII,patch clamp,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2007-07-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究研究所zh_TW
Appears in Collections:動物學研究所

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
2.25 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved