請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29420完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李慧梅 | |
| dc.contributor.author | Szu-Ying Lin | en |
| dc.contributor.author | 林思瑩 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:06:38Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2007-07-27 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-20 | |
| dc.identifier.citation | Altekruse, S. F., M. L. Cohen, and D. L. Swerdlow,” Emerging foodborne disease.” Emerg. Infect. Dis. 3, 285-293(1997)
American Conference of Governmental Industrial Hygienists (ACGIH) “Threshold Limit Values and Biological Exposure Indices.”, Cincinnati, Ohio: ACGIH. Aoife P. Boyd, Guy R. Cornelis “Yersinia” Principles of Bacterial Pathogenesis, 227-264, Academic Press (2001) Bellante De Martiis, G., A. D’Arca Simonetti, G. Tarsitani, Vanini G.C., L’aria “indoor: la tutela della salute negli ambient confinati”. Igiene Monderna; 97; 705-706(1994) Burge, H.A., J.A. Otten, “Fungi” In: Macher, J.M., H.A. Ammann, H.A. Burge and D. Milton.(eds) Bioaerosol: assessment and control, Cincinnati, ACGIH, 19.1-13(1995). CDC “Salmonellosis: Frequently asked questions.” Centers for Disease Control and Prevention, http://www.cdc.gov/ncidod/diseases/submenus/sub_salmonella.htm(1998) Scherer, Christina A. and Samuel I. Miller “Molecular pathogenesis of Salmonellae”, Principles of Bacterial Pathogenesis, 265-333, Academic Press,(2001) Cover, T. L., and R. C. Aber, Yersinia enterocolitica: New Engl. J. Med. 321, 16-24(1989) Cox, C. S. “The Aerobiological Pathway of Microorganisms”, John Wiley & Sons, Chichester, xi(1987) D.R Harper, Molecular Virology, second edition, BIOS Scientific Publishers Limited(1998) Donham, J., P. Haglind, Y. Peterson, R. Rylander, L. Belin “Environmental and health studies of farm worers in Swedish swine confinement buildings,” British J. Ind. Med., 46, 31-37 (1989) Douwes, J., P. Thorne, N. Pearce, D. Heederic “Bioaerosol health effect and exposure assessment: Progress and prospects”, Ann. occup. Hyg., Vol. 47, No. 3, pp. 187–200(2003) Eduard, W., P. Sandven, F. Levy “Serum IgG antibodies to mold spores in two Norwegian sawmill populations: relationship to respiratory and other wor-related symptoms,” Am.J. Ind., 24, 207-222 (1993) ETV, “Test report of filtration efficiency of bioaerosols in HVAC systems- AAF International PerfectPleat Ultra”, GS10F0283K-BPA-1, EPA Task Order 1101, RTI Project No. 08787.001(2004) Fan, L., J. Song, P.D. Hildebrand, C.F. Forney “Interaction of ozone and negative air ions to control micro-organisms”, Journal of Applied Microbiology, 93 (1), 144–148. (2002) Fisk, J. W., A. H. Rosenfeld “Estimates of improved productivity and health from better indoor environments”, Indoor Air, 7, pp 158-172 (1997). Flannigan, B. “Air sampling for fungi in indoor environments,” Journal of Aerosol Science, 28, 381-392 (1997). Fox, A. M., M. T. Dulay ”Heterogeneous Photocatalysis”, Chem. Rev., 93, pp.341-357(1993) Fujishima, A., K. Honda “Electrochemical ph otolysis of water at a semiconducter electrode”, Nature, 238, pp.37-38(1972) Caneva, G., P. Mandrioli and C. Sabbioni, Cultural Heritage and Aerobiology, 3-29. Kluwer Academic Publishers. Printed in the Netherlands. (2003) Gregory, P.H., The microbiology of the atmosphere, 2nd ed. Leonard Hall, (1973) Gustavsson, J., “How can Air Filters Contribute to Better IAQ?” Filtration and Separation, V 36, n2, pp. 20-25 (1999) Hey Reoun An “Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples”, Atmospheric Environment, doi:10.1016/j.atmosenv.2006.07.020 (2006) Heyder, J., J. Gebhart, G. Rudolf, C.F. Schiller, W. Stahlhofen “Deposition of particles in the human respiratory tract in the size range 0.005-15 μm,” Journal of Aerosol Science, 5, 811-828 (1986) Hirst, J. M. “ Statutes of the British Aerobiology Federation, Aerobiology at Rothamsted Grana”, 33, 66(1994) Horrak, U., J. Salm, H. Tammet “Bursts of intermediate ion in atmospheric air.”, Geophys. Res., 103(D12), 13909-13915 (1998) http://www.cabri.org/CABRI/srs-doc/index.html http://www.nanosight.co.uk/applicationnotes/LambdaPhage.php Ireland, J. C., P. Klostermann, E. W. Rice, R. M. Clark, “Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation, Appl. Environ. Microbial. 59,(5)pp.1668-1670(1993) Angulo-Romero, J. “Pathogenic and antigenic fungi in school dust of the south of Spain.”, Aerobiology, 49-65, Lewis Publishers(1996) Kellogg , E. W. III, M. G. Yost, N. Barthakur, A. P. Kreuger “Superoxide involvement in the bactericidal effects of negative air ions on Staphylococcus albus” , Nature, 281, 400 - 401 (1979) Kowasaki, W. J., Y. T. Choi, D. J. Seo, S. B. Park “Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus”, Ozone-Sci Eng., 20, 205-221 (1998) Krueger , A.P. “Biological impact of small ions”, Science, 193, 1209-1213 (1976) Kuo, Y. M., C. S. Li “Seasonal fungus prevalence inside and outside of domestic environment in the subtropical climate,” Atmospheric Environment, 28, No.19, 3125-3130 (1994) Lacey, J. “The aerobiology of conidial fungi”. In Biology of Conidial Fungi, G.T. Cole, B. Kendrick, eds; New York: Academic Press, 373-416 (1981) Lee, S., M. Naamura, S. Ohgai “Inactivation of phase Q beta by 254 nm UV light and titanium dioxide photocatalyst,” J Environ Sci Heal A, 33, 1643-1655 (1998) Li, C. S., P. S. Chen “Environmental bioaerosol monitering: Real-time quantitative PCR with gene probe, fluorochrome, and flow cytometry”, Institute of Environmental Health, College of Public Health, National Taiwan University.(2005) Li, C. S. and Y. C. Wang ” Inactivation Effects of Airborne Ozone for Bioaerosols”, J. Environ. Heal., submitted. (2005) Li, C. S. and Y. M. Wen “Control effectiveness of electrostatic precipitation on airborne microorganisms”, Aerosol Science and Technology, 37:933–938 (2003) Li, L. M., D. C. Sheu “Influences of Preparation Conditions on Bactericidal Efficacy of TiO2 Containing Coating” (2004) Liao, C. M., W. C. Luo, “Use of temporal/seasonal- and size-dependent bioaerosol data to characterize the contribution of outdoor fungi to residential exposures,” Science of the Total Environment, 347, 78-97 (2005) Licht, W. , Air pollution control engineering, 2nd edition, Marcel Dekker, Inc., New York and Basel (1988) Lin, C.H., C.S. Li, “Effectiveness of titanium dioxide photocatalyst filter for controlling bioaerosol,” Aerosol Sci. Technol, 37, 162-170 (2003) Luts, A. “Evolution of negative small ions at enhanced ionization.”, J. Geophys. Res., 100(D1), 1487–1496 (1995) Macher, J., Bioaerosols: assessment and control, American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio: ACGIH. (1999) Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby “Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism” Appl. Environ. Microbial., 65,(9),pp.4094-4098(1999) Matsunaga, T., R. Tomoda, T. Nakajima, N. Nakamura, T. Komine “Continuous-Sterilization system that uses photosemiconductor powders”, Appl. Environ. Microbial. 54 pp. 1330-1333(1988) Matsunaga, T., R. Tomoda, T. Nakajima, H. Wake “Photo-Electrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbial. Lett.29:pp.211(1985) Melbosted, E., W. Eduard, A. Sogstad, P. Sandven, J. Lassen, P. Sostrand, K. Heldal, “Exposure to bacterial aerosol and work-related symptoms in sewage workers,” Am. J. Ind. Med., 25, 59-63 (1994) Michael B. A. Oldstone, Viruses, Plagues, and History, 125-186, New York Oxford University Press, Inc.(1998) Muilenberg, M. and H. Burge, Aerobiology, Lewis Publishers, Introduction(1996) Mitchell, B.W., J.K. King, “Effect of Negative Air Ionization on Airborne Transmission of Newcastle Disease Virus” Avian Diseases 38 pp.725-732 (1994) Morey, P. R., M. J. Hodgson, W. G. Sorenson, G. J. Kullman, W.W. Rhodes, G. S. Visvesvara “Environmental studies in moldy office buildings”, Div. of Respiratory Disease Studies, NIOSH, 399-419(1986) Nicholson, K.W., “The dry deposition of small particles: a review of experimental measurements” Atoms Environ, 22, 2653-2666 (1988) Micali,O., R. Montacutelli and Tarsitani ” Pathogenic microorganisms and situations of risk to man”, Cultural Heritage and Aerobiology, 31-43. Kluwer Academic Publishers. Printed in the Netherlands. (2003) Pasanen, A.L., “A Review: fungal exposure assessment in indoor environments,” Indoor Air., 11, 87-98 (2001) Perry, R. D. and J. D. Fetherston “Yersinia pestis: Etilogic agent of plaque.” Clin. Microbial. Rev. 10, 35-66(1997) Rajeshwar, K. “Photoelectrochemistry and the environment. Revs. of Appl. Electrochem. 44.pp.1067-1082(1995) Rambelli. A. “Fondamenti di micolgia. Bologna: Zanichelli”.(1981) Rengasamy, A., “Respiratory protection against bioaerosols: Literature review and research needs,” American Journal of Infection Control, 345-354 (2004). Reponen, T., A. Hyvarinen, J. Ruusanen, T. Raunemaa, A. Nevalainen, “Comparison of concentration and size distributions of fungal spores in buildings with and without mould problems,” 25, No. 8, 1595-1603 (1994). Richardson, G., S. A. Eick, D. J. Harwood, K. G. Rosen, F. Dobbs “Negative air ionization and the production of hydrogen peroxide.”, Atomospheric Environment, 37, 3701-3706( 2003) Saito, T., T. Iwase, J. Horie, T. Morioka ”Antibacterial effect of powdered TiO2 with Photocatalytic reaction on Streptococcus Mutan Strain AHT”, J. Dent. Health. 36, pp.490-491(1992) Sanden G., B. S. Fields, J.M. Barbaree, J.C. Feeley “Viability of Legionella pneumophila in chlorine-free waters at elevated temperatures”, Curr. Microbiol, No. 18, pp. 61-65.(1989) Shi, L., B. Chen, Y. Wang “Electret air filter used for getting rid of bacteria”,(ISE6)Proceedings, 6th International Symposium on Electrets, 549-522 (1988) Sigsgaard, T., P. Malmros, L. Nersting, C. Peterson “Respiratory disorders and atopy in Danish resource recovery worers,” Can. J. Microbiol, 1-24 (1992) Simeray, J., J. P. Chaumont, D. Leger “Seasonal variations in the airborne fungal spore population of the east of France(Franche-Comte). Comparison between urban and rural environment during two years.”, Aerobiologia; 9; 201-206 (1993) Skalny J. D., T. Mikoviny, S. Matejcik, N. J. Mason “An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air.”, International Journal of Mass Spectrometry, 233, 317-324, (2004) Spurr, R.A., H. Myers “Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer”, Anal. Chem. 29 pp 760-762 (1957). Stanley, R. G., H. F. Linskins, Pollen: biology, chemistry and management. Berlin: Springer-Verlag, (1974) Sunada, K., Y. Kikuchi, K. Hashimoto, A. Fujishima “Bactericidal and detoxification effects of TiO2 thin film photocatalysts”, Environmental Science & Technology 32. pp. 726-728(1998) Tauxe, R. V., J. Vandepitte, G. Wauters, S. M. Martin, V. Goossens, P. De Mol, R. Ven Noyen, G. Thiers ” Yersinia enterocolitica infections and pork: The missing link.” Lancet ii, 1129-1132(1987) Taylor, E.J., Dorlands medical dictionary, Philidelphia: W.B. Saunders Co(1988) Thompson, WAR, editor. Black medical dictionary, 33ed. Adam and Charles Black, (1981) Tipple, M. A., L. A. Bland, J. J. Murphy, M. J. Arduino, A. L. Panlilio, J. J. Farmer III, M. A. Tourault, C. R. Macpherson, J. E. Menitove, A. J. Grindon “Sepsis associated with transfusion of red cells contaminated with Yersinia enterocolitica.”, Transfusion 30, 207-213(1990) Tseng, C. C. and C. S. Li “Ozone for inactivation of aerosolized bacteriophages”, Aerosol Science and Technology, 40:683–689 (2006) Tseng, C. C., C. S. Li “Collection efficiencies of aerosol samplers for virus-containing aerosols”, Aerosol Science, 36, 593–607 (2005) Watts, R. J., S. Kong, M. P. Orr, G. C. Miller, B. E. Henry “Photo Catalytic Inactivation of coliform bacteria and viruses in secondary wastewater effluent”, Water Research, 29, pp. 95-100(1995) WHO “Typhoid fever”, World Health Organization, http://www.who.ch/ (1998) WHO, Fact sheet no.139:” Multi-drug resistant Salmonella typhimurium. “ World Health Organization, http://www.who.ch/ (1997) Willeke, K., Y. Qian, J. Donnelly, S. Grinsphpun, V. Ulevicius “Penetration of airborne microorganisms through a surgical mask and a dust/mist respirator,” Am Indust Hyg Assoc J, 57, 348-355 (1996) Wu, P.C., H. J. Su, C.Y. Lin, “Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons” The Science of the Total Environment, 253, 111-118 (2000) 王玉純,臭氧對生物氣膠殺菌效率之評估,國立台灣大學環境衛生研究所博士論文(2002) 生物資源保存及研究中心,http://www.bcrc.firdi.org.tw/ 余國賓,以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究,國立台灣大學環境工程研究所博士論文(2006) 吳致呈,空氣負離子控制室內空氣污染物之研究。國立台灣大學環境工程研究所博士論文(2006) 吳華真,退伍軍人症,仁愛醫訊,第19卷,第一期(2003) 林玟仙,Dopa之生物活性探討。嘉南藥理科技大學碩士論文(2005) 林家妤,以紫外線及二氧化鈦光觸媒對生物氣膠控制技術之評估,國立台灣大學環境衛生研究所博士論文(2002) 林鴻鵬,紡織工業抗菌劑之比較,絲織公會-台灣區絲織產業網,第37期(2001) 室內空氣質量標準,中國大陸國家環保總局衛生部,2002 年12月,http://www.zhb.gov.cn 孫浩仁,室內材質表面特性對空氣負離子去除懸浮微粒效率之影響,國立台灣大學環境工程研究所碩士論文(2006) 國家衛生研究院,流感資訊網,http://flu.nhri.org.tw/H5N1_index.php 婁嘉玲,紫外光與光觸媒濾材對生物氣膠殺菌效率之研究,國立台灣大學環境工程研究所碩士論文(2005) 曾國瑋,奈米銀濾材處理生物氣膠之研究,國立台灣大學環境工程研究所碩士論文(2006) 黃小林,莊佩君,黃宜靖,揚心豪,幾丁聚醣前處理濾材對細菌類生物氣膠去除效能之評估, 2006年國際氣膠研討會論文集 鄭博仁,空氣負離子對室內懸浮微粒去除效率之研究,國立台灣大學環境工程研究所碩士論文(2004) 辦公室及公眾場所室內空氣質素檢定計劃指南,香港政府之室內空氣質素管理小組,2003 年9 月,http://www.iaq.gov.hk 環保署室內空氣品質建議值,中華民國行政院環保署,2006 年1月,http://www.epa.gov.tw。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29420 | - |
| dc.description.abstract | 現代人大部分的時間都處於室內環境,尤其是都市生活;因此,室內空氣品質與健康、舒適的生活息息相關,而生物氣膠即為影響室內空氣品質重要的因子之一。
本研究主要內容在探討使用光觸媒(PCO)、空氣負離子(NAI)及光觸媒結合空氣負離子(NAI/PCO)在不同相對濕度下對生物氣膠的控制效果。在生物氣膠方面,選擇了λ vir、E. coli、C. famata三種生物氣膠以釐清光觸媒及空氣負離子對三種生物氣膠控制效率的不同。 研究結果發現,在低相對濕度的環境下λ vir、C. famata的活性會受到影響,而對於E. coli就沒有顯著的影響;大致上,在各相對濕度下,三種控制方法的增進效率大小依序為ηenhanced,NAI/PCO > ηenhanced,NAI > ηenhanced,PCO,其中增進的效果以λ vir最佳,在相對濕度50%及70%時,ηenhanced,NAI/PCO,λ vir的平均值都達到34.2%;對E. coli及Yeast而言,在已開啟負離子的狀況下,再開啟光觸媒,對生物氣膠的控制並沒有幫助。 總控制效率的部分,E. coli的範圍約在30.7±5.0%之間,相對濕度的改變對各控制方法都沒有很顯著的影響;λ vir處理效率的範圍約在68.0±16.6%之間,控制效果受到相對濕度相當大的影響,相對濕度越高,控制效果越好;Yeast處理效率的範圍約在49.2±16.2%之間,隨著相對濕度越高,控制效率越低。以總控制效率的平均值而言,三種生物氣膠都呈現ηNAI/PCO/Filter > ηNAI/Filter > ηPCO/Filter的結果。本研究也發現,在相對濕度50%時,各生物氣膠的整體控制效果最佳。 | zh_TW |
| dc.description.abstract | Nowdays, people stay indoors most of time. This is especially ture for the residents in metropolitan. Therefore, the IAQ(Indoor Air Quality)has great impact on human health and comfortable life. Bioaerosols play an important role on IAQ.
The purpose of this research was to evaluate bioaerosols control technology by the combination of photocatalytic oxidation (PCO) and negative air ions (NAI). To investigate the difference of the results of using PCO and NAI to control different bioaerosols, this research chose λ vir, E. coli and C. famata as the experimental bioaerosols. The results of this research show that the activity of λ vir and C. famata decreased in the lower relative humidity (RH) environment which is at 30% RH. But the effect of RH is not obvious to E. coli. In general, the enhanced efficiency in decreasing order is ηenhanced,NAI/PCO > ηenhanced,NAI > ηenhanced,PCO. The ηenhanced,NAI/PCO,λ vir is 34.2% when RH is 50% and 70%, which is the highest among all of the enhanced efficiency. However, there is no difference between ηenhanced,NAI/PCO and ηenhanced,NAI for both E. coli and Yeast. The results from control efficiency show that the range of ηE. Coli is 30.7±5.0% and the effect of RH is not obvious. The range of ηλ vir is 68.0±16.6%, and ηλ vir increased with RH. The range of ηYeast is 49.2±16.2%, and ηYeast decreased with RH. The average of control efficiency in decreasing order is ηNAI/PCO/Filter > ηNAI/Filter > ηPCO/Filter. The optimum RH for control of the bioaerosols investigated in this study was found to be 50%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:06:38Z (GMT). No. of bitstreams: 1 ntu-96-R94541122-1.pdf: 2210238 bytes, checksum: 395ae6a8a1470089375b695a92d2bd5d (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 第1章 緒論 1
1-1 研究緣起 1 1-2 研究目的 4 1-3 研究內容與方法 4 1-4 研究流程 5 第2章 文獻回顧 6 2-1 生物氣膠學的定義 6 2-2 生物氣膠之種類 7 2.2.1 細菌氣膠 7 2.2.2 真菌氣膠 8 2.2.3 病毒氣膠 10 2-3 生物氣膠對人體之影響 14 2.3.1 生物分解對於物品的破壞 20 2.3.2 細菌氣膠對於人體的危害 22 2.3.3 真菌氣膠對於人體的危害 25 2.3.4 病毒氣膠對於人體的危害 27 2-4 生物氣膠採樣量測技術 33 2.4.1 生物氣膠採樣技術 33 2.4.2 生物氣膠培養技術 34 2.4.3 新興生物氣膠監測技術---RT-PCR 35 2-5 室內生物性氣膠濃度之相關建議值 36 2-6 室內生物氣膠控制技術之簡介 37 2.6.1 紫外光控制技術 38 2.6.2 光觸媒控制技術 39 2.6.3 負離子控制技術 42 2.6.4 臭氧控制技術 43 2.6.5 抗菌濾材控制技術 43 第3章 實驗設備與方法 45 3-1 實驗系統 45 3.1.1 實驗設備 50 3.1.2 生物氣膠培養單元 53 3.1.3 生物氣膠產生單元 57 3.1.4 生物氣膠採樣單元 58 3-2 前置實驗 60 3-3 生物氣膠於光觸媒結合負離子反應器之過濾效率之研究方法 61 3-4 實驗計算方法及指標參數 63 第4章 結果與討論 66 4-1 基本特性測試 66 4.1.1 空白實驗 66 4.1.2 光觸媒濾材之顯微攝影觀察 67 4.1.3 負離子濃度測試 70 4.1.4 生物氣膠背景濃度 72 4-2 實驗結果分析 75 4.2.1 不同相對濕度下光觸媒濾材對生物氣膠的過濾效率 77 4.2.2 各物種的總控制效率 79 4.2.3 使用負離子控制生物氣膠的增進效率 83 4.2.4 使用光觸媒控制生物氣膠的增進效率 89 4.2.5 使用負離子結合光觸媒控制生物氣膠的增進效率 94 4.2.6 各物種總控制效率的比較 103 4-3 本研究結果與其他控制方法比較 108 第5章 結論與建議 110 5-1 結論 110 5-2 建議 113 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相對濕度 | zh_TW |
| dc.subject | 光觸媒 | zh_TW |
| dc.subject | 空氣負離子 | zh_TW |
| dc.subject | 生物氣膠 | zh_TW |
| dc.subject | Relative humidity | en |
| dc.subject | NAI | en |
| dc.subject | PCO | en |
| dc.subject | Bioaerosol | en |
| dc.title | 結合光觸媒與空氣負離子控制生物氣膠之研究 | zh_TW |
| dc.title | Bioaerosol Control Assessment:Combination of Photo Catalytic Oxidation and Negative Air Ions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張靜文,黃小林 | |
| dc.subject.keyword | 生物氣膠,光觸媒,空氣負離子,相對濕度, | zh_TW |
| dc.subject.keyword | Bioaerosol,PCO,NAI,Relative humidity, | en |
| dc.relation.page | 128 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-23 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
