請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29408完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(Jian-Jang Huang) | |
| dc.contributor.author | Yen-Jen Hung | en |
| dc.contributor.author | 紅彥任 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:06:21Z | - |
| dc.date.available | 2011-08-08 | |
| dc.date.copyright | 2011-08-08 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-04 | |
| dc.identifier.citation | [1] Green, M.A., et al., Solar cell efficiency tables (version 33). Progress in
Photovoltaics, 2009. 17(1): p. 85-94. [2] Green, M.A., The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics, 2009. 17(3): p. 183-189. [3] Bauhuis, G.J., et al., Thin film GaAs solar cells with increased quantum efficiency due to light reflection. Solar Energy Materials and Solar Cells, 2004. 83(1): p. 81-90. [4] Takamoto, T., et al., Over 30% efficient InGaP/GaAs tandem solar cells. Applied Physics Letters, 1997. 70(3): p. 381-383. [5] Meier, J., et al., Potential of amorphous and microcrystalline silicon solar cells. Thin Solid Films, 2004. 451-52: p. 518-524. [6] Bucher, K., J. Bruns, and H.G. Wagemann, Absorption-coefficient of silicon - an assessment of measurements and the simulation of temperature-variation. Journal of Applied Physics, 1994. 75(2): p. 1127-1132. [7] Yoshida, N., et al., A study of absorption coefficient spectra in a-Si : H films near the transition from amorphous to crystalline phase measured by resonant photothermal bending spectroscopy. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2164-2166. [8] Takamoto, T., et al., Over 30% efficient InGaP/GaAs tandem solar cells. Applied Physics Letters, 1997. 70(3): p. 381-383. [9] Hein, M., et al., Characterization of a 300X photovoltaic concentrator system with one-axis tracking. Solar Energy Materials and Solar Cells, 2003. 75(1-2): p. 277-283. [10] Zhu, J., et al., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Letters, 2009. 9(1): p. 279-282. [11] Zhu et al, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett., 2009. [12] Chen, C.P., et al., Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cellapplications. Nanotechnology, 2009. 20(24): p.245204-1 -245204-6. [13] Matsui, H., et al., Correlation between micro-roughness, surface chemistry, and performance of crystalline Si/amorphous Si : H : Cl hetero-junction solar cells. Journal of Non-Crystalline Solids, 2008. 354(19-25): p. 2483-2487. [14] Krc, J., et al., Effect of surface roughness of ZnO : Al films on light scattering in hydrogenated amorphous silicon solar cells. Thin Solid Films, 2003. p. 296-304. [15] Campbell, P.R. and M.A. Green, On intensity enhancement in textured optical sheets for solar-cells. IEEE Transactions on Electron Devices, 1986. 33(11): p. 1834-1835. [16]. Derrick, G.H., R.C. Mcphedran, and D.R. Mckenzie, Theoretical-studies of textured amorphous-silicon solar-cells. Applied Optics, 1986. 25(20): p. 3690-3696. [17] Campbell, P., Light trapping in textured solar-cells. Solar Energy Materials, 1990. 21(2-3): p. 165-172. [18] Takato, H., et al., Effects of optical confinement in textured antireflection coating using ZnO films for solar-cells. Japanese Journal of Applied Physics Part 2-Letters, 1992. 31(12A): p. L1665-L1667. [19] Zhao, J.H., et al., 19.8% efficient 'honeycomb' textured multicrystalline and 24.4% monocrystalline silicon solar cells. Applied Physics Letters, 1998. 73(14): p. 1991-1993. [20] Spiegel, M., et al., Industrially attractive front contact formation methods for mechanically V-textured multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2002. 74(1-4): p. 175-182. [21] Springer, J., et al., Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 2005. 85(1): p. 1-11. [22] Hupkes, J., et al., Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells. Solar Energy Materials and Solar Cells, 2006. 90(18-19): p. 3054-3060. [23] Muhida, R., et al., Relationship between average slope of textured substrate and poly-Si thin film solar cells performance. Materials Research Innovations, 2009. 13(3): p. 246-248. [24] Kumar, P., et al., Microcrystalline single and double junction silicon based solar cells entirely prepared by HWCVD on textured zinc oxide substrate. Journal of Non-Crystalline Solids, 2006. 352(9-20): p. 1855-1858. [25] Mase, T., et al., Amorphous-silicon solar-cells on textured aluminum substrate prepared by electrical etching. Solar Cells, 1986. 17(2-3): p. 191-200. [26] Koida, T., H. Fujiwara, and M. Kondo, High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009. 93(6-7): p. 851-854. [27] Koida, T., H. Fujiwara, and M. Kondo, Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high-mobility hydrogen-doped In2O3 transparent conductive oxide. Applied Physics Express, 2008. 1(4): p. 041501-1-041501-3. [28] Kawashima, T., et al., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 2004. 164(1-3): p. 199-202. [29] Alamri, S.N. and A.W. Brinkman, The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells. Journal of Physics D-Applied Physics, 2000. 33(1): p. L1-L4. [30] Plattner, R., W. Stetter, and P. Kohler, Transparent conductive tin-oxide layers for thin-film solar-cells. Siemens Forschungs-Und Entwicklungsberichte- Siemens Research and Development Reports, 1988. 17(3): p. 138-146. [31] Gubbala, S., et al., Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energy & Environmental Science, 2009. 2(12): p. 1302-1309. [32] Liu, J.P., et al., Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires. Applied Physics Letters, 2009. 94(17): p. 173107-1-173107-3. [33] Jeon, M. and K. Kamisako, Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application. Materials Letters, 2009. 63(9-10): p. 777-779. [34] Boercker, J.E., E. Enache-Pommer, and E.S. Aydil, Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells. Nanotechnology, 2008. 19(9): p. 095604-1-095604-10. [35] Tian, B.Z., et al., Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007. 449(7164): p. 885-U8. [36] Lok, C., Nanowire solar cells - Building photovoltaics out of nanowires. Technology Review, 2005. 108(9): p. 85-86. [37] Dmitruk, N.L., A.V. Korovin, and I.B. Mamontova, Efficiency enhancement of surface barrier solar cells due to excitation of surface plasmon polaritons. Semiconductor Science and Technology, 2009. 24(12): p. 125011-1-125011-7. [38] Losurdo, M., et al., Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance. Solar Energy Materials and Solar Cells, 2009. 93(10): p. 1749-1754. [39] Akimov, Y.A., K. Ostrikov, and E.P. Li, Surface plasmon enhancement of optical absorption in thin-film silicon solar sells. Plasmonics, 2009. 4(2): p. 107-113. [40] Chang, Y.C., et al., Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells. Journal of Vacuum Science & Technology B, 2007. 25(6): p. 1899-1902. [41] Pillai, S., et al., Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 2007. 101(9): p. 093105-1-093105-8. [42] Derkacs, D., et al., Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Applied Physics Letters, 2006. 89(9): p. 093103-1-093103-3. [43] Ishikawa, K., et al., The photocurrent of dye-sensitized solar cells enhanced by the surface plasmon resonance. Journal of Chemical Engineering of Japan, 2004. 37(5): p. 645-649. [44] Vukadinovic, M., et al., Numerical modelling of trap-assisted tunnelling mechanism in a-Si : H and mu c-Si n/p structures and tandem solar cells. Solar Energy Materials and Solar Cells, 2001. 66(1-4): p. 361-367. [45] http://www.gintechenergy.com/tw/ [46] Hermann A. Haus “Waves And Fields In Optoelectronics” [47] [47] Junbo Feng, et al., Polarization beam splitter using a binary grating coupler. Optics Letters, 2007. Vol. 32, No.12 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29408 | - |
| dc.description.abstract | 有效降低光在表面的反射率是提升太陽能電池效率的一個重要的課題,許多研究針對整體電池結構上的改變來尋求反射率的降低進而使入射的光子變多。
在本篇論文中,我們發現到具有奈米結構的光二極體有較低的載子傳輸時間以及較低的反射率,其中奈米結構是透過奈米小球微影術所製成。 接著我們將二氧化矽奈米小球旋轉塗佈在太陽能電池的表面上,因此電池的整體結構並不會改變。這是一個較為實際且有機會導入業界的方法。此二維的奈米小球陣列將會提升包括垂直入射時以及斜向入射時的太陽能電池轉換效率。這個改善是由於此二維陣列產生了利於光子傳導的模態,使得入射光子導入吸收層的數量增加,意即有效的減少了光反射率。 我們也發現到此二維陣列對於電場垂直極化的光有較大的提升而對磁場垂直極化的光幫助則較少,正好可以彌補電場垂直極化的光在光學上反射率較高的問題。若奈米小球可被塗佈於更大面積,則有很大的機會可被導入業界。 | zh_TW |
| dc.description.abstract | For solar cells, it is generally thought that surface reflectivity is one of the bottlenecks that limited the conversion efficiency. Tremendous efforts have been spent on reducing the reflectance using different structures to trap more photons in the solar cells.
In this thesis, nanopatterned photodiodes are found to have faster transit time and lower reflectivity. The nanopatterns are made by nanosphere lithography. Silica nanoparticles were then coated on the solar cell surface without altering the whole structure. It’s a more practical method for the industry purpose which would not like the complicated processes involved. The two dimensional nanoparticle arrays improve the efficiency not only at normal incidence but also at oblique incidence. The improvements are attributed to the guided modes excited by the two dimensional silica grating structure and the reduction of the reflectivity. Furthermore, we found the silica nanoparticles improve the TE polarized light more significant than TM polarized light, which is a good way to compensate the larger reflectivity in TE polarized light for oblique incidence. If the nanoparticles can be coated on a large area, it will have a profound effect on solar cells industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:06:21Z (GMT). No. of bitstreams: 1 ntu-100-R98941007-1.pdf: 4108004 bytes, checksum: b6cda5010343a1ab61c2b40f20610e9a (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction………………………………………………………………………………………………1
1-1. Research background……………………………………………………………………………….1 1-2. Research motivations……………………………………………………………………………….4 Chapter 2 Historical review……………………………………………………………………………………….8 2-1. Preface……………………………………………………………………………………………………..8 2-2. Improving the broadband absorption…………….…………………………………………8 2-3. Improving the acceptance angle………………………………………………………….…10 2-4. Improving the reflectivity……………………………………………………………………….12 2-5. Improving the carrier recombination……………………………………………………..12 Chapter3 Improving the Acceptance Angle and the Carrier Transit Time of Photodiodes by the Application of Nanostructure…………………………………………………..13 3-1. Preface……………………………………………………………………………………………………13 3-2. Device fabrication and measurement……………………………………………………..13 3-3. Characteristic discussions……………………………………………………………………….21 3-4. Summary……………………………………………………………………………………………..…30 Chapter 4 Silica Nanoparticles Coated Polycrystalline Solar Cells with Improved Responsivity and Conversion Efficiency…………………………………………………………………..31 4-1. Preface…………………………………………………………………………………………………..31 4-2. Device fabrication and measurement……………………………………………………..31 4-3. Characteristic discussions……………………………………………………………………….36 4-4. Summary………………………………………………………………………………………………..47 Chapter 5 Conclusions…………………………………………………………………………………………….48 Reference……………………………………………………………………………………………………………….50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 奈米小球 | zh_TW |
| dc.subject | 傳導模態 | zh_TW |
| dc.subject | 極化 | zh_TW |
| dc.subject | 光柵 | zh_TW |
| dc.subject | solar cells | en |
| dc.subject | grating | en |
| dc.subject | polarization | en |
| dc.subject | guided modes | en |
| dc.subject | nanoparticles | en |
| dc.subject | silica | en |
| dc.title | 利用二維陣列自組裝奈米小球提升太陽能電池之效率 | zh_TW |
| dc.title | Improving the Solar Cell Efficiency by Applying Two Dimensional Self-Assembled Nanoparticle Arrays | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉(Yean-Woei Kiang),陳奕君(I-Chun Cheng),何志浩(Jr Hau He) | |
| dc.subject.keyword | 太陽能電池,二氧化矽,奈米小球,傳導模態,極化,光柵, | zh_TW |
| dc.subject.keyword | solar cells,silica,nanoparticles,guided modes,polarization,grating, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
