Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29395
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorYan-Chen Liuen
dc.contributor.author劉彥辰zh_TW
dc.date.accessioned2021-06-13T01:06:02Z-
dc.date.available2007-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation[1] Bertrand Byramjee and Sylvain Duquesne. Classification of genus 2 curves over F_{2^n} and optimization of their arithmetic, 2004. Cryptology ePrint Archive 2004/107.
[2] L. Carlitz. The arithmetic of polynomials in a galois field. Amer. J. Math., 54:39–50, 1932.
[3] Youngju Choie and Eunkyung Jeong. Isomorphism classes of hyperelliptic curves of genus 2 over F2n, 2003. Cryptology ePrint Archive 2003/213.
[4] Youngju Choie and D. Yun. Isomorphism classes of hyperelliptic curves of genus 2 over F_q, pages 190–202. LNCS 2384. Springer, 2002.
[5] Huah Chu, Yingpu Deng, and Tse-Chung Yang. Isomorphism classes of hyperelliptic curves of genus 4 over finite fields with even characteristic. preprint.
[6] Henri Cohen and Gerhard Frey. Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall/CRC, 2006.Homepage : http://www.hyperelliptic.org/HEHCC/.
[7] Yingpu Deng. Isomorphism classes of hyperelliptic curves of genus 4 over finite fields with odd characteristic. preprint.
[8] Yingpu Deng. Isomorphism classes of hyperelliptic curves of genus 3 over finite fields. Finite Fields and Their Applications, 12:248–282, 2006.
[9] Yingpu Deng and M. Liu. Isomorphism classes of hyperelliptic curves of genus 2 over finite fields with characteristic 2. Sci. China Ser. A, 49(2):173–184, 2005.
[10] L. Hern´andez Encinasa and J. Mu˜noz Masqu´e. Isomorphism classes of hyperelliptic curves of genus 2 in characteristic 5. Technical Report CORR2002-07, Centre For Applied Cryptographic Research, University of Waterloo, Canada, 2002. Available at http://www.cacr.math.uwaterloo.ca/techreports/2002/corr2002-07.ps.
[11] L. Hern´andez Encinasa, Alfred J. Menezes, and J. Mu˜noz Masqu´e. Isomorphism classes of genus−2 hyperelliptic curves over finite fields. Appl. Algebra Engrg. Comm. Comput., 13(1):57–65, Apr 2002.
[12] N. J. Fine. Binomial coefficients modulo a prime. Am. Math. Mon.,54(10):589–592, Dec 1947.
[13] J. Espinosa Garcia, L. Hern´andez Encinas, and J. Mu˜noz Masqu´e. A review on the isomorphism classes of hyperelliptic curves of genus 2 over finite fields admitting a weierstrass point. Acta. Appl. Math., 93(1-3):299–318, 2006.
[14] Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves, pages 19–34. LNCS 1807. Springer, 2000.
[15] Nathan Jacobson. Basic Algebra, volume 1. W. H. Freeman and Company. In page 145, chapter 2, exercise 20.
[16] Eunkyung Jeong. Isomorphism classes of hyperelliptic curves of genus 3 over finite fields, 2003. Cryptology ePrint Archive 2003/251.
[17] N. Koblitz. Hyperelliptic cryptosystems. J. Crypto., 1:139–150, 203–209,1989.
[18] Neal Koblitz, A. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. Algebraic aspects of cryptography, pages 155–178. Algorithms and computation in mathematics, vol. 3. Springer, 2nd edition, 1998. In Appendix:“An elementary introduction to hyperelliptic curves”.
[19] P. Lockhart. On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc., 342(2):729–752, Apr 1994.
[20] A. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. An elementary introduction to hyperelliptic curves. Technical Report CORR96-19, Department of C&O, University of Waterloo, Canada, 1996. Available at http://www.cacr.math.uwaterloo.ca/techreports/1997/corr96-19.ps.
[21] Michael Rosen. Number theory in function fields. GTM 210. Springer, 2002. Chapter 2 :“Primes, Arithmetic Functions, and the Zeta Function”.
[22] Josuph J. Rotman. The Theory of Groups, An Introduction. 2nd edition. In page 45, Theorem 3.23.
[23] H. Wilf. Generatingfunctionology. Academic Press, first edition. Available at http://www.math.upenn.edu/˜wilf/DownldGF.html.
[24] Tse-Chung Yang. The isomorphism classes of hyperelliptic curves over finite fields eith characteristic 2. Master’s thesis, Nation Taiwan University, Department of Mathematics, Jun 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29395-
dc.description.abstract這篇論文中, 我們利用有別於前人的方法估計了特徵數為 $2$ 的有限體上具有Weierstrass點的超橢圓曲線的同構類數目. 其結果為
$2q^{2g−1}+q^{g−1}+O(q^{g−2})$ 若 $g$ 為奇數;
$2q^{2g−1}+q^g+O(q^{g−1})$ 若 $g$ 為偶數.
其中 $g$ 為虧格數, $q$ 為有限體的元素個數.
zh_TW
dc.description.abstractIn this thesis, we will give an asymptotic behavior of the number of hyperelliptic curves with Weierstrass points of arbitrary genus $g$ over $F_q$ when $q$ is even. Our result is
$2q^{2g−1}+q^{g−1}+O(q^{g−2})$ if $g$ is odd;
$2q^{2g−1}+q^g+O(q^{g−1})$ if $g$is even.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:06:02Z (GMT). No. of bitstreams: 1
ntu-96-R94221030-1.pdf: 476801 bytes, checksum: d1dd7613da548bdc78aaf138a06bb454 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1.Introduction..............................1
2.Preliminaries..............................3
3.(Rg)s..............................5
3.1.Sing(h)..............................6
3.2.Lemma and Corollary..............................8
3.3.Weight..............................10
3.4.Zeta function..............................11
3.5.Prove Lemma 3.6..............................12
4.Technique Lemmas..............................14
5.FixTg(σ) for a
eq1..............................16
5.1.T0..............................19
5.2.T3,T5,...,T2g+1..............................19
5.2.1.g ≤ 4..............................20
5.2.2.g ≥ 5,T3..............................20
5.2.3.g ≥ 5,T5..............................26
6.FixTg(σ) for a=1..............................30
6.1.b = 0..............................30
6.2.b
eq0,FixRg (σ)..............................31
6.3.b
eq0,Fix(Rg)s(σ)..............................36
Reference..............................38
dc.language.isoen
dc.subject超橢圓曲線zh_TW
dc.subject同構類zh_TW
dc.subjecthyperelliptic curveen
dc.title有限體上超橢圓曲線之數目zh_TW
dc.titleThe Number of Hyperelliptic Curves over Finite Fields with Even Characteristicen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康明昌(Ming-Chang Kang),陳永秋(Eng-Tjioe Tan),胡守仁(Shou-jen Hu),陳榮凱(Jungkai Alfred Chen)
dc.subject.keyword超橢圓曲線,同構類,zh_TW
dc.subject.keywordhyperelliptic curve,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
465.63 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved