Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29395
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor朱樺(Huah Chu)
dc.contributor.authorYan-Chen Liuen
dc.contributor.author劉彥辰zh_TW
dc.date.accessioned2021-06-13T01:06:02Z-
dc.date.available2007-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-20
dc.identifier.citation[1] Bertrand Byramjee and Sylvain Duquesne. Classification of genus 2 curves over F_{2^n} and optimization of their arithmetic, 2004. Cryptology ePrint Archive 2004/107.
[2] L. Carlitz. The arithmetic of polynomials in a galois field. Amer. J. Math., 54:39–50, 1932.
[3] Youngju Choie and Eunkyung Jeong. Isomorphism classes of hyperelliptic curves of genus 2 over F2n, 2003. Cryptology ePrint Archive 2003/213.
[4] Youngju Choie and D. Yun. Isomorphism classes of hyperelliptic curves of genus 2 over F_q, pages 190–202. LNCS 2384. Springer, 2002.
[5] Huah Chu, Yingpu Deng, and Tse-Chung Yang. Isomorphism classes of hyperelliptic curves of genus 4 over finite fields with even characteristic. preprint.
[6] Henri Cohen and Gerhard Frey. Handbook of elliptic and hyperelliptic curve cryptography. Chapman & Hall/CRC, 2006.Homepage : http://www.hyperelliptic.org/HEHCC/.
[7] Yingpu Deng. Isomorphism classes of hyperelliptic curves of genus 4 over finite fields with odd characteristic. preprint.
[8] Yingpu Deng. Isomorphism classes of hyperelliptic curves of genus 3 over finite fields. Finite Fields and Their Applications, 12:248–282, 2006.
[9] Yingpu Deng and M. Liu. Isomorphism classes of hyperelliptic curves of genus 2 over finite fields with characteristic 2. Sci. China Ser. A, 49(2):173–184, 2005.
[10] L. Hern´andez Encinasa and J. Mu˜noz Masqu´e. Isomorphism classes of hyperelliptic curves of genus 2 in characteristic 5. Technical Report CORR2002-07, Centre For Applied Cryptographic Research, University of Waterloo, Canada, 2002. Available at http://www.cacr.math.uwaterloo.ca/techreports/2002/corr2002-07.ps.
[11] L. Hern´andez Encinasa, Alfred J. Menezes, and J. Mu˜noz Masqu´e. Isomorphism classes of genus−2 hyperelliptic curves over finite fields. Appl. Algebra Engrg. Comm. Comput., 13(1):57–65, Apr 2002.
[12] N. J. Fine. Binomial coefficients modulo a prime. Am. Math. Mon.,54(10):589–592, Dec 1947.
[13] J. Espinosa Garcia, L. Hern´andez Encinas, and J. Mu˜noz Masqu´e. A review on the isomorphism classes of hyperelliptic curves of genus 2 over finite fields admitting a weierstrass point. Acta. Appl. Math., 93(1-3):299–318, 2006.
[14] Pierrick Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves, pages 19–34. LNCS 1807. Springer, 2000.
[15] Nathan Jacobson. Basic Algebra, volume 1. W. H. Freeman and Company. In page 145, chapter 2, exercise 20.
[16] Eunkyung Jeong. Isomorphism classes of hyperelliptic curves of genus 3 over finite fields, 2003. Cryptology ePrint Archive 2003/251.
[17] N. Koblitz. Hyperelliptic cryptosystems. J. Crypto., 1:139–150, 203–209,1989.
[18] Neal Koblitz, A. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. Algebraic aspects of cryptography, pages 155–178. Algorithms and computation in mathematics, vol. 3. Springer, 2nd edition, 1998. In Appendix:“An elementary introduction to hyperelliptic curves”.
[19] P. Lockhart. On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc., 342(2):729–752, Apr 1994.
[20] A. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. An elementary introduction to hyperelliptic curves. Technical Report CORR96-19, Department of C&O, University of Waterloo, Canada, 1996. Available at http://www.cacr.math.uwaterloo.ca/techreports/1997/corr96-19.ps.
[21] Michael Rosen. Number theory in function fields. GTM 210. Springer, 2002. Chapter 2 :“Primes, Arithmetic Functions, and the Zeta Function”.
[22] Josuph J. Rotman. The Theory of Groups, An Introduction. 2nd edition. In page 45, Theorem 3.23.
[23] H. Wilf. Generatingfunctionology. Academic Press, first edition. Available at http://www.math.upenn.edu/˜wilf/DownldGF.html.
[24] Tse-Chung Yang. The isomorphism classes of hyperelliptic curves over finite fields eith characteristic 2. Master’s thesis, Nation Taiwan University, Department of Mathematics, Jun 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29395-
dc.description.abstract這篇論文中, 我們利用有別於前人的方法估計了特徵數為 $2$ 的有限體上具有Weierstrass點的超橢圓曲線的同構類數目. 其結果為
$2q^{2g−1}+q^{g−1}+O(q^{g−2})$ 若 $g$ 為奇數;
$2q^{2g−1}+q^g+O(q^{g−1})$ 若 $g$ 為偶數.
其中 $g$ 為虧格數, $q$ 為有限體的元素個數.
zh_TW
dc.description.abstractIn this thesis, we will give an asymptotic behavior of the number of hyperelliptic curves with Weierstrass points of arbitrary genus $g$ over $F_q$ when $q$ is even. Our result is
$2q^{2g−1}+q^{g−1}+O(q^{g−2})$ if $g$ is odd;
$2q^{2g−1}+q^g+O(q^{g−1})$ if $g$is even.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:06:02Z (GMT). No. of bitstreams: 1
ntu-96-R94221030-1.pdf: 476801 bytes, checksum: d1dd7613da548bdc78aaf138a06bb454 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents1.Introduction..............................1
2.Preliminaries..............................3
3.(Rg)s..............................5
3.1.Sing(h)..............................6
3.2.Lemma and Corollary..............................8
3.3.Weight..............................10
3.4.Zeta function..............................11
3.5.Prove Lemma 3.6..............................12
4.Technique Lemmas..............................14
5.FixTg(σ) for a
eq1..............................16
5.1.T0..............................19
5.2.T3,T5,...,T2g+1..............................19
5.2.1.g ≤ 4..............................20
5.2.2.g ≥ 5,T3..............................20
5.2.3.g ≥ 5,T5..............................26
6.FixTg(σ) for a=1..............................30
6.1.b = 0..............................30
6.2.b
eq0,FixRg (σ)..............................31
6.3.b
eq0,Fix(Rg)s(σ)..............................36
Reference..............................38
dc.language.isoen
dc.subject超橢圓曲線zh_TW
dc.subject同構類zh_TW
dc.subjecthyperelliptic curveen
dc.title有限體上超橢圓曲線之數目zh_TW
dc.titleThe Number of Hyperelliptic Curves over Finite Fields with Even Characteristicen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康明昌(Ming-Chang Kang),陳永秋(Eng-Tjioe Tan),胡守仁(Shou-jen Hu),陳榮凱(Jungkai Alfred Chen)
dc.subject.keyword超橢圓曲線,同構類,zh_TW
dc.subject.keywordhyperelliptic curve,en
dc.relation.page40
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-96-1.pdf
  Restricted Access
465.63 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved