Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬(Yih-Peng Chiou)
dc.contributor.authorYung-Ming Huangen
dc.contributor.author黃永銘zh_TW
dc.date.accessioned2021-06-13T01:05:29Z-
dc.date.available2008-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] 陳金鑫和黃孝文, OLED 有機電機發光材料與元件,五南圖書股份有限公司,2006.
[2] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals, ” J. Chem. Phys., vol.38, pp. 2024, 1963.
[3] C. W. Tang and S. A. WanSlyke, “Electroluminescence of doped
organic thin films, ” Phy. Rev. Lett., vol. 51, pp. 913, 1987.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, “Light-emitting
diodes based on conjugated polymers, ” Nature., vol.347 , pp. 539,
1990.
[5] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson and S. R. Forrest, “Highly efficient phosphorescent
emission from organic electroluminescent devices, ” Nature.395, pp.
151-154 (10 September 1998).
[6] 史光國,半導體發光二極體及固態照明,全華科技圖書股份有限公司,2006.
[7] E. Yablonovitch, “Inhibited spontaneous emission in solid-state
physics and electronics, ” Phy. Rev. Lett., vol. 58, pp. 2059-2062,
1987.
[8] S. John, “Strong localization of photons in certain disordered dielectric superlattices, ” Phy. Rev. Lett., vol. 58, pp. 2486-2489, 1987.
[9] Yee, K. S., “Numerical solution of initial boundary value problems
involving Maxewll’s equations in isotropic media, ” IEEE Trans.
Antennas and Propagation., vol. 14, pp. 302-307, 1966.
[10] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3nd ed., Boston: Artech House, 2005.
[11] S. Liu, N. Yuan, and J. Mo, “A novel FDTD formulation for dispersive media, ” IEEE J. Micro. Wireless. Comp. Lett., vol. 13, pp.187-189, 2003.
[12] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves, ” J. Computational Phys., vol. 1, pp. 185-
200, 1994.
[13] M. Kuzuoglu and R. Mittra.“Frequency dependence of the constitutive parameters of causalperfectly matched anisotropic absorbers,” IEEE J. Micro. Guided Wave Lett., vol6, pp447-449, 1996
[14] J. A. Roden and S. D. Gedney, “Convolutional PML(CPML): an efficient FDTD inplementation of CFS-PML for arbitary media, ”
Microwave Opt. Technol. Lett., vol. 27, pp. 334-339, 2000.
[15] T. Su, W. Yu, and R. Mittra, “A new look at FDTD excitation
sources, ” IEEE J. Micro. Opt. Thch. Lett., vol. 45, pp. 203-207,
2005.
[16] M. F. Su, I. E.-Kady, D. A. Bader, S.-Y. Lin, “A novel FDTD
application featuring OpenMP-MPI hybrid parallelization, ” International Conference on Parallel Processing ICPP’04, pp. 373-379, 2004.
[17] T. Namiki, “A new FDTD algorithm based on alternating direction implicit method, ” IEEE J. Trans. Micro.Theo. and Tech. Lett., vol. 47, pp. 2003-2007, 1999.
[18] S. Wang and F. L. Teixeira, “An efficient PML implementation for the ADI-FDTD method, ” IEEE J. Micro. Wireless. Comp. Lett.,
vol. 13, pp. 72-74, 2003.
[19] S. D. Gedney, G. Liu, J. A. Roden and A. Zhu, “Perfectly matched
layer media with CFS for an unconditionally stable ADI-FDTD, ”
IEEE J. Micro. Ante. Pro. Lett., vol. 49, pp. 1554-1559, 2001.
[20] A. P. Zhao, “Two special notes on the implementation of the unconditionally stable ADI-FDTD methods, ” IEEE J. Micro. Opt.
Thch. Lett., vol. 33, pp. 273-276, 2002.
[21] S. D. Gedney, G. Liu, J. A. Roden and A. Zhu, “PLJERC-ADIFDTD method for isotropic plasma, ” IEEE J. Micro. Wireless. Comp. Lett., vol. 15, pp. 277-279, 2005.
[22] H. C. Chen, J.-H. Lee, C.-C. Shiiau, C.-C Tang, and Y.-W. Kiang,
“Electromagnetic modeling of organic light-emitting devices, ” J.
Lightwave Technol., vol. 24, pp. 2450-2457, 2006.
[23] V. Bulovi´c, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov,
and S. R. Forrest, “Weak microcavity effects in organic lightemitting
devices, ” Phy. Rev. Lett., vol. 58, pp. 3730-3740, 1998.
[24] B. C. Krummacher, M. K. Mathai, V. Choong, S. A. Choulis, F. So, A. Winnacker, “General method to evaluate substrate surface
modification techniques for light extraction enhancement of organic
light emitting diodes, ” Appl. Phys. Lett., vol. 100, pp. 054702-1-
054702-6, 2006.
[25] A. Chuntinan, K. Ishiahara, T. Asano, M. Fujita, and S. Noda,
“Thoretical analysis on light-extraction efficiency of organic lightemitting diodes using FDTD and mode-expansion methods, ” Organic electronics., vol. 6, pp. 3-9, 2005.
[26] H. A. Haus, Waves and Fields in Optoelectronics, Englewood Cliffs, N.J.: Prentice-Hall, 1984. P. Yeh, Optical Waves in Layered Media, Wiley, New York (1998).
[27] Lumerical Solutions Inc, http://www.lumerical.com/fdtd.
[28] Y. J. Lee, S-H. Kim, G.-H. Kim and Y-H Lee, “Far-field radiation
of photonic crystal organic light-emitting diode, ” Opt. Express, vol.
13, pp. 5864-5870, 2005.
[29] Y. R. Do, Y. C. Kim, Y.-W. Song, C.-C. Cho, H. Jeon, Y. J. Lee, S.-H. Kim, and Y.-H. Lee, “Enhanced light extraction from organic light-emitting diodes with 2D SiO2/SiNx photonic crystals, ” Adv. Mater, vol. 15, pp. 1214-1218, 2003.
[30] Y. R. Do, Y. C. Kim, Y-W. and Y-H Lee, “Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure, ” Appl. Phys. Lett., vol. 96, pp. 7629-7636, 2004.
[31] Y. J. Lee, S.-H. Kim, J. Huh, G.-H. kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y.-R. Do, “A high-extraction-efficiency nanopatterned
organic light-emitting diode, ” Appl. Phys. Lett., vol. 82, pp. 3779-
3781, 2003.
[32] M. Kitamura, S. Iwamoto , and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals, ” J. J. Appl. Phys. Lett., vol. 44, pp. 2844-2848, 2005.
[33] S. G. Johnson and J. D. Joannopoulos, “Introduction to photonic
crystals: Bloch’s theorem, band diagrams, and gaps (but no defects),
” http://ab-initio.mit.edu/photons/tutorial/, pp. 1-15, 2003.
[34] S. Fan, P. R. Villeneuve, D. Joannopolos, and E. F. Schubert., “High extraction efficiency of spontaneous emission from slabs of photonic crystals, ” Phy. Rev. Lett., vol. 78, pp. 3294-3297, 1997.
[35] J.-K. Hwang, H.-Y. Ryu and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity, ” Phy. Rev. Lett., vol. 60, pp. 4688-4695, 1999.
[36] R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission
from a two-dimensional photonic bandgap crystal slab, ” J. Opt.
Soc. Am. B, vol. 17, pp. 1438-1442, 2000.
[37] H.-Y. Ryu, J.-K. Hwang, Y.-H. Lee and Y.-H. Lee, “Enhancement
of light extraction from two-dimensional photoniccrystal slab structures, ” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 231-237,
2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29370-
dc.description.abstract在本論文中,我們以三維有限時域差分法模擬發光元件之發光效率,並且加入光子晶體結構以改良其發光效率。
光波在發光元件如有機發光二極體或發光二極體中,會因為折射率差異發生全反射而侷限在其內部。我們以有限時域差分法為基礎來模擬光波在元件內的情形,並計算可見光的發光效率。
有限時域差分法具有容易推導且方便計算複雜結構的優點。但是為了處理有機發光二極體內的金屬電極以及內部的微結構,我們必須再做上一些修正。以Drude model去近似光波在金屬電極的行為,並且搭配近遠場轉換及幾何光學,求得最後光波穿透到空氣的能量。而因為有限時域差分法模擬時需極大的運算資源,因此我們使用平行運算或交替方向隱式差分來改良之。
為了提高發光元件的發光效率,我們改變有機發光二極體結構厚度或在全反射的介面加入光柵結構。藉由光波在週期性結構的散射行為,使光波能夠耦合到有機發光二極體外。最後將發光二極體做成光子晶體結構,改變其結構的半徑周期比與厚度,利用光子晶體的能隙的設計,使光波耦合到空氣中,以提升發光二極體發光效率。
zh_TW
dc.description.abstractIn this thesis, we use three dimensional finite-difference time-domain (FDTD) method to simulate the extraction efficiency of light emitting devices and improve the extraction efficiency by applying photonic crystal structure.
Light wave in light emitting devices, such as organic light-emitting diodes (OLED) or light emitting diodes (LED), is confined when total internal reflection occurs due to difference of refractive index in each layer. We simulate behavior of light in these devices and evaluate the extraction efficiency of each based on FDTD.
The advantages of FDTD are easy derivation and convenience for complex structure design. However, some modification is essential for the metal cathode and inner micro-structures in OLED. We use the Drude model to approximate the light behavior in the metal and evaluate the energy penetrating to air using near-to-far-field transformation and geometric optics. Parallel programming and alternating-direction-implicit difference are also used to improve calculation efficiency since FDTD simulation requires a huge amount of calculation resource.
To enhance the extraction efficiency of OLED, we modify the thickness of layers of OLED and insert the grating structures between the layers. Light is scattered to air due to the grating structure. Finally, we apply photonic crystal structures on LED with different radius-period ratio and thickness. By manipulating the photonic bandgap, light will be coupled to air, resulting in high extraction efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:05:29Z (GMT). No. of bitstreams: 1
ntu-96-R94941062-1.pdf: 4426594 bytes, checksum: 6a5d896630129960e81ea73445f8324a (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
誌謝…………………………………………………………………… 1
中文摘要……………………………………………………………… 2
英文摘要……………………………………………………………… 4
第一章 導論…………………………………………………………14
1.1有機發光二極體…………………………………………………14
1.2發光二極體………………………………………………………15
1.3光子晶體…………………………………………………………16
1.4有限時域差分法…………………………………………………17
第二章 有限時域差分法……………………………………………26
2.1分段線性電流密度遞迴迴旋積分法……………………………26
2.2完美匹配邊界……………………………………………………31
2.3點波原設計………………………………………………………35
2.4三維平型化計算…………………………………………………37
2.5交替方向隱式有限時域差分法…………………………………39
第三章 三維有機發光二極體模擬分析……………………………54
3.1三維有機發光二極體模擬模型…………………………………54
3.2三維有機發光二極體模擬分析…………………………………58
第四章 有機發光二極體效率改良設計……………………………76
4.1三維模擬方法與光子晶體設計…………………………………76
4.2模擬分析…………………………………………………………77
第五章 發光二極體效率改良設計…………………………………91
5.1三維發光二極體模型……………………………………………91
5.2光子晶體平板……………………………………………………92
5.3光子晶體設計與模擬……………………………………………93
第六章 結論…………………………………………………………103
參考文獻……………………………………………………………104
dc.language.isozh-TW
dc.subject有限時域差分法zh_TW
dc.subject有機發光二極體zh_TW
dc.subject發光二極體zh_TW
dc.subjectOLEDen
dc.subjectLEDen
dc.subjectFDTDen
dc.title以有限時域差分法模擬發光元件之發光效率zh_TW
dc.titleFDTD Simulation for Extraction Efficiency of Light Emitting Devicesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖(Hoang Yan Lin),吳忠幟(Chung- Chih Wu)
dc.subject.keyword有限時域差分法,有機發光二極體,發光二極體,zh_TW
dc.subject.keywordFDTD,OLED,LED,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
4.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved