Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29359
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉(Shih-Wei Tsai)
dc.contributor.authorI-Su Leeen
dc.contributor.author李易俗zh_TW
dc.date.accessioned2021-06-13T01:05:14Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation1. M. Lippmann, Health effects of ozone a critical review. Air & waste management association, 1989. 39: p. 672-695.
2. C.C. Chan and T.H. Wu, Effects of ambient ozone exposure on mail carriers' peak expiratory flow rates. Environmental Health Perspectives, 2005. 113(6): p. 735-738.
3. R.Z. Sokol, P. Kraft, I.M. Fowler, et al., Exposure to environmental ozone alters semen quality. Environmental Health Perspectives, 2006. 114: p. 360-364.
4. 行政院環境保護署, 空氣品質監測報告-九十四年年報. 2005.
5. M.L. Bell, R. Goldberg, C. Hogrefe, et al., Climate change, ambient ozone, and health in 50 US cities. Climatic Change, 2007. 82(1-2): p. 61-76.
6. J.I. Freijer, J.C.H. van Eijkeren and L. van Bree, A model for the effect on health of repeated exposure to ozone. Environmental Modelling & Software, 2002. 17(6): p. 553-562.
7. L.F. Macmanus, M.J. Walzak and N.S. McIntyre, Study of ultraviolet light and ozone surface modification of polypropylene. Journal of Polymer Science Part a-Polymer Chemistry, 1999. 37(14): p. 2489-2501.
8. T.R. Hauser and D.W. Bradley, Specific spectrophotometric determination of ozone in the atmosphere using 1,2-di(4-pyridyl)ethylene. Analytical Chemistry, 1966. 38(11): p. 1529-32.
9. C. Monn and M. Hangartner, Passive sampling for ozone. Journal of the Air & Waste Management Association, 1990. 40(3): p. 357-8.
10. M. Hangartner, M. Kirchner and H. Werner, Evaluation of passive methods for measuring ozone in the european Alps. Analyst, 1996. 121: p. 1269-1272.
11. D. Grosjean and M.H. Mohamed W, A passive sampler for atmospheric ozone. Air & waste management association, 1992. 42: p. 169-173.
12. J. Zhou and S. Smith, Measurement of ozone concentrations in ambient air using a badge-type passive monitor. Air & waste management association, 1997. 47: p. 697-703.
13. A.C. Franklin, L.G. Salmon, J.M. Wolfson, et al., Ozone measurements in South Carolina using passive samplers. Journal of the Air & Waste Management Association, 2004. 54(10): p. 1312-20.
14. P. Koutrakis, J.M. Wolfson, A. bunyaviroch, et al., Measurement of ambient ozone using a nitrite-coated filter. American chemical society, 1993. 65: p. 209-214.
15. R. Otson and P. Fellin, A Review of Techniques for Measurement of Airborne Aldehydes. Science of the Total Environment, 1988. 77(2-3): p. 95-131.
16. 雷蕙禎, Passive Air Sampling for Glutaraldehyde by Solid Phase Microextraction, in 國立台灣大學公共生學院碩士論文. 2004.
17. S.W. Tsai and K.Y. Kao, Diffusive sampling of airborne furfural by solid-phase microextraction device with on-fiber derivatization. Journal of Chromatography A, 2006. 1129(1): p. 29-33.
18. S.W. Tsai and C.M. Chang, Analysis of aldehydes in water by solid-phase microextraction with on-fiber derivatization. Journal of Chromatography A, 2003. 1015(1-2): p. 143-150.
19. J. Pawliszyn, Solid-Phase Microextraction -Theory and Practice. 1997, New York: Wiley-VCH.
20. J. Pawliszyn, Application of Solid Phase Microextraction. 1999, Cambridge: Royal Society of Chemistry.
21. J.A. Koziel and J. Pawliszyn, Air sampling and analysis of volatile organic compounds with solid phase microextraction. Journal of the Air & Waste Management Association, 2001. 51(2): p. 173-184.
22. M.L. Bao, F. Pantani, O. Griffini, et al., Determination of carbonyl compounds in water by derivatization - solid-phase microextraction and gas chromatographic analysis. Journal of Chromatography A, 1998. 809(1-2): p. 75-87.
23. A. Khaled and J. Pawliszyn, Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device. Journal of Chromatography A, 2000. 892(1-2): p. 455-467.
24. P.A. Martos and J. Pawliszyn, Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization. Analytical Chemistry, 1998. 70(11): p. 2311-2320.
25. P.A. Martos and J. Pawliszyn, Time-weighted average sampling with solid-phase microextraction devise: Implications for enhanced personal exposure monitoring to airborne pollutants. Analytical Chemistry, 1999. 71(8): p. 1513-1520.
26. R. Batlle, A. Colmsjo and U. Nilsson, Development of a personal isocyanate sampler based on DBA derivatization on solid-phase microextraction fibers. Fresenius Journal of Analytical Chemistry, 2001. 371(4): p. 514-518.
27. S.W. Tsai and T.A. Chang, Time-weighted average sampling of airborne n-valeraldehyde by a solid-phase microextration device. Journal of Chromatography A, 2002. 954(1-2): p. 191-198.
28. S.W. Tsai and K.K. Wu, Determination of ethylene oxide by solid-phase microextraction device with on-fiber derivatization. Journal of Chromatography A, 2003. 991(1): p. 1-11.
29. S.W. Tsai, S.T. Tsai, V.S. Wang, et al., Laboratory and field validations of a solid-phase microextraction device for the determination of ethylene oxide. Journal of Chromatography A, 2004. 1026(1-2): p. 25-30.
30. R.C. Reid, J.M. Prausnitz and B.E. Polling, The Properties of Gases and Liquids. 4 ed. 1988, New York: McGraw-Hill. 586.
31. L.J. Wu and S.S.Q. Hee, A Solid Sorbent Personal Air Sampling Method for Aldehydes. American Industrial Hygiene Association Journal, 1995. 56(4): p. 362-367.
32. G. Jakobi and P. Fabian, Indoor outdoor concentrations of ozone and peroxyacetyl nitrate (PAN). International Journal of Biometeorology, 1997. 40(3): p. 162-165.
33. U.S.E.P. Agency. 1997.
34. C.J.O. Childress, William T. Foreman, B.F. Connor, et al., New Reporting Procedures Based on Long-Term Method Detection Levels and Some Considerations for Interpretations of Water-Quality Data Provided by the U.S. Geological Survey National Water Quality Laboratory 1999, Virginia: Reston.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29359-
dc.description.abstract在眾多空氣污染物中,臭氧為其中主要污染物之一,而當人們暴露其中時,可能會引起顯著的健康危害,例如:咳嗽、氣喘、頭痛及肺部疾病等。評估個人暴露於臭氧之方式很多,而被動式採樣器則是最常用的方法之一;然而大量有機溶劑之使用,則是現有方法的缺點。
固相微萃取技術(solid phase microextraction: SPME)結合了採樣、濃縮、及前處理等技術,也可以直接使用氣相層析儀分析,而這些優點是傳統分析法所沒有的。因此,本研究的目的即嘗試以固相微萃取技術採樣及分析空氣中之臭氧。
本研究以固相微萃取纖維poly(dimethylsiloxane)/divinylbenzene (PDBM/DVB)做為被動式採樣器之主體,並將1,2-di-(4-pyridyl)ethylene (DPE)吸附於纖維後,暴露於已知濃度之臭氧;纖維上所產生之pyriden-4-aldehyde,則以頂空萃取方式經吸附衍生試劑O-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA)後,在纖維上衍生形成oxime,並接著以可攜式氣相層析儀進行分析。研究中發現,經過7分鐘的熱脫附後,oxime的脫附效率可達百分之百而所設計之臭氧被動式採樣器之實驗採樣率為9.80×10-5±6.47×10-6 cm3/sec, 可偵測之最低濃度範圍為每小時120 ppb。本研究亦另外嘗試將DPE及PFBHA同時裹附於纖維後再進行採樣及分析;結果發現,除了將可節省實驗操作時間外,所得之實驗採樣率1.10×10-4±0.053×10-4 cm3/sec及可偵測之每最低濃度為每小時30 ppb。
與其他現有方法相比,本研究所發展的臭氧被動式採樣方法具有操作方便、可重覆使用及敏感度較高等優點;未來將繼續探討各種環境因素之影響,以進一步瞭解本方法使用上之限制。
zh_TW
dc.description.abstractOzone is one of the major air pollutants and exposure to ozone might cause severe health effects, such as cough, asthma, headache, and lung diseases. To assess the exposures of ozone, several personal passive samplers are currently available. However, solvent desorption is commonly needed for the techniques which make the methods not very convenient. On the other hand, solid phase microextraciton (SPME) presents many advantages over conventional methods by combining sampling, preconcentration, and direct transfer of the analytes into a standard gas chromatograph (GC) system. Therefore, the purpose of this research was to develop a personal passive sampler for ozone based on the technique of SPME. Known concentrations of ozone were generated by the calibrated ozone generator in an exposure chamber. The poly(dimethylsiloxane)/divinylbenzene (PDBM/DVB) fiber was selected and 1,2-di-(4-pyridyl)ethylene (DPE) was first loaded onto the fiber. After exposures of ozone, pyriden-4-aldehyde was formed on the fiber and further headspace extraction of O-(2,3,4,5,6-Pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA) was then followed for the on-fiber derivatization. The derivatives, oximes, were then determined by portable gas chromatography/electron capture detection (portable GC/ECD) by directly inserting the SPME fibers into its injection port for thermal desorption and analysis. The desorption efficiency was found to be 100% when the time for thermal desorption time was 7 minutes while the experimental sampling rate was found to be 9.80×10-5±6.47×10-6 cm3/sec with detection limit of 120 ppb per hour.
Other than the procedure mentioned above coating of PFBHA onto the fiber for the preparation of sampler before ozone exposure was also performed in the study. The results showed that the experimental sampling rate was 1.10×10-4±0.053×10-4 cm3/sec with detection limit of 30 ppb per hour.
Compared with other methods, the current designed sampler provides a convenient and sensitive tool for the exposure assessments of ozone. More studies will be needed in the future to evaluate the possible effects of environmental factors on the designed sampler.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:05:14Z (GMT). No. of bitstreams: 1
ntu-96-R94844009-1.pdf: 1692936 bytes, checksum: cc97d6b9c4908465ada50352e997e164 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTable of Contents
致謝 i
中文摘要 ii
Abstract iii
Table of Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
Background 1
Purpose 4
Research flowchart 5
Chapter 2 Materials and Methods 6
Materials and Instruments 6
Solid Phase Microextraction 7
SPME diffusive sampler 8
Trapping element of the SPME diffusive sampler 9
Ozone exposure chamber 11
Oxime stock solution 11
Gas chromatography/mass spectrometry, GC/MS 11
Portable Gas chromatography with electron capture detector, GC-ECD 12
Standard curve of oxime 12
Chapter 3 Results and discussions 13
Fiber selection 13
Loading of DPE onto the fiber 13
Identifications of oximes formed on-fiber 14
Detection limit 15
Validations of sampling rate 16
Pyridin-4-aldehyde storage 16
Comparisons with other methods 17
Chapter 4 Conclusions 18
References 19
List of Tables
Table 1-1 Currently available passive samplers for ozone 24
Table 3-1 Fiber selection 25
Table 3-2 Desorption efficiency of oxime 25
Table 3-3 Storage of pyridin-4-aldehyde 26
Table 3-4 Compare with other sampler 26
List of Figures
Figure 1-1 Ozone concentration from 1996 to 2005 in Taiwan 27
Figure 1-2 SPME diffusive sampler 28
Figure 2-1 SPME analyze procedure 29
Figure 2-2 Exposure system 30
Figure 2-3 Synthesis procedure of oxime 31
Figure 2-4 Standard curve of oxime 32
Figure 3-1 Reaction-time profiles for oxime formed on-fiber by headspace extraction of 17 mg/mL PFBHA after 1 min exposure of 5 mg/mL pyridine-4-aldehyde solution 33
Figure 3-2 Oxime formed on-fiber by 1 min headspace extraction of 17 mg/mL PFBHA after 1 min exposure of 5 mg/mL pyridine-4-aldehyde solution (a) Chromatogram (b) Mass spectrum 34
Figure 3-3 1 mg/mL oxime standard solution (a) Chromatogram (b) Mass spectrum 35
Figure 3-4 Oxime formed on-fiber by 1 min headspace extraction of 17 mg/mL PFBHA after sampling for 400 ppb ozone exposure about 4 hour (a) Chromatogram (b) Mass spectrum 36
Figure 3-5 Portable GC/ECD chromatogram of standard oxime solution (a) 0.5 ug/mL (b) 2 ug/mL 37
Figure 3-6 Portable GC/ECD chromatogram of sample injection (a) 450 ppb-hr (b) 120 ppb-hr 38
Figure 3-7 Mass collected versus exposure 360 ppb of ozone and exposure time from 5 min to 75 min 39
dc.language.isoen
dc.subjectPFBHAzh_TW
dc.subject固相微萃取zh_TW
dc.subjectDPEzh_TW
dc.subject被動式採樣zh_TW
dc.subject臭氧zh_TW
dc.subjectPassive sampleren
dc.subjectSPMEen
dc.subjectPFBHAen
dc.subjectDPEen
dc.subjectOzoneen
dc.title利用固相微萃取技術發展空氣中臭氧之採樣分析方法zh_TW
dc.titlePassive Air Sampling for Ozone by Solid Phase Microextractionen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Lin),陳美蓮(Mei-Lien Chen)
dc.subject.keyword臭氧,DPE,PFBHA,固相微萃取,被動式採樣,zh_TW
dc.subject.keywordOzone,DPE,PFBHA,SPME,Passive sampler,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved