Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29354Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蘇慧敏(Hui-Min Su) | |
| dc.contributor.author | JEN-JUI CHEN | en |
| dc.contributor.author | 陳人睿 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:05:08Z | - |
| dc.date.available | 2012-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | Behl C (2002) Oestrogen as a neuroprotective hormone. Nature Reviews Neuroscience 3:433-442.
Brinton RD, Chen S, Montoya M, Hsieh D, Minaya J (2000) The estrogen replacement therapy of the Women's Health Initiative promotes the cellular mechanisms of memory and neuronal survival in neurons vulnerable to Alzheimer's disease. Maturitas 34 Suppl 2:S35-52. Burdge GC (2006) Metabolism of [alpha]-linolenic acid in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids 75:161-168. Burdge GC, Postle AD (1994) Hepatic phospholipid molecular species in the guinea pig. Adaptations to pregnancy. Lipids 29:259-264. Burdge GC, Wootton SA (2002) Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88:411-420. Burdge GC, Jones AE, Wootton SA (2002) Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men*. Br J Nutr 88:355-363. Connor WE, Neuringer M, Lin DS (1990) Dietary effects on brain fatty acid composition: the reversibility of n- 3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J Lipid Res 31:237-247. Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH (2000) Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids 35:1305-1312. Cunningham CJ, Sinnott M, Denihan A, Rowan M, Walsh JB, O'Moore R, Coakley D, Coen RF, Lawler BA, O'Neill DD (2001) Endogenous Sex Hormone Levels in Postmenopausal Women with Alzheimer's Disease. J Clin Endocrinol Metab 86:1099-1103. Delion S, Chalon S, Guilloteau D, Lejeune B, Besnard JC, Durand G (1997) Age-related changes in phospholipid fatty acid composition and monoaminergic neurotransmission in the hippocampus of rats fed a balanced or an n-3 polyunsaturated fatty acid-deficient diet. J Lipid Res 38:680-689. DeMar JC, Ma K, Bell JM, Rapoport SI (2004) Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. Journal of Neurochemistry 91:1125-1137. Diaz Brinton R, Chen S, Montoya M, Hsieh D, Minaya J, Kim J, Chu HP (2000) The women's health initiative estrogen replacement therapy is neurotrophic and neuroprotective. Neurobiol Aging 21:475-496. El-Bakri NK, Islam A, Zhu S, Elhassan A, Mohammed A, Winblad B, Adem A (2004) Effects of estrogen and progesterone treatment on rat hippocampal NMDA receptors: Relationship to Morris water maze performance. Journal of Cellular and Molecular Medicine 8:537-544. Favreliere S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A, Durand G (2003) DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiology of Aging 24:233-243. Feller SE, Gawrisch K, MacKerell AD, Jr. (2002) Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J Am Chem Soc 124:318-326. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497-509. Frick KM, Fernandez SM, Bulinski SC (2002) Estrogen replacement improves spatial reference memory and increases hippocampal synaptophysin in aged female mice. Neuroscience 115:547-558. Frye CA (1995) Estrus-associated decrements in a water maze task are limited to acquisition. Physiology & Behavior 57:5-14. Galea LAM, Wide JK, Paine TA, Holmes MM, Ormerod BK, Floresco SB (2001) High levels of estradiol disrupt conditioned place preference learning, stimulus response learning and reference memory but have limited effects on working memory. Behavioural Brain Research 126:115-126. Garcia-Segura LM, Wozniak A, Azcoitia I, Rodriguez JR, Hutchison RE, Hutchison JB (1999) Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience 89:567-578. Giltay EJ, Gooren LJ, Toorians AW, Katan MB, Zock PL (2004a) Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr 80:1167-1174. Giltay EJ, Duschek EJ, Katan MB, Zock PL, Neele SJ, Netelenbos JC (2004b) Raloxifene and hormone replacement therapy increase arachidonic acid and docosahexaenoic acid levels in postmenopausal women. J Endocrinol 182:399-408. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320:134-139. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150-1154. Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N, Jr. (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34 Suppl:S239-243. Grodin JM, Siiteri PK, MacDonald PC (1973) Source of estrogen production in postmenopausal women. J Clin Endocrinol Metab 36:207-214. Hamano H, Nabekura J, Nishikawa M, Ogawa T (1996) Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol 75:1264-1270. Hogervorst E, Williams J, Budge M, Riedel W, Jolles J (2000) The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. Neuroscience 101:485-512. Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto T, Kawato S (2004) Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci U S A 101:865-870. Innis SM (1992) Plasma and red blood cell fatty acid values as indexes of essential fatty acids in the developing organs of infants fed with milk or formulas. J Pediatr 120:S78-86. Kawata M (1995) Roles of steroid hormones and their receptors in structural organization in the nervous system. Neuroscience Research 24:1-46. Koehler KF, Helguero LA, Haldosen L-A, Warner M, Gustafsson J-A (2005) Reflections on the Discovery and Significance of Estrogen Receptor {beta}. Endocr Rev 26:465-478. Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal Synapses Depend on Hippocampal Estrogen Synthesis. J Neurosci 24:5913-5921. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93:5925-5930. Lathe R (2001) Hormones and the hippocampus. J Endocrinol 169:205-231. Lauritzen L, Hansen HS, Jorgensen MH, Michaelsen KF (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1-94. Li C, Brake WG, Romeo RD, Dunlop JC, Gordon M, Buzescu R, Magarinos AM, Allen PB, Greengard P, Luine V, McEwen BS (2004) Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc Natl Acad Sci U S A 101:2185-2190. Lim SY, Hoshiba J, Moriguchi T, Salem N, Jr. (2005) N-3 fatty acid deficiency induced by a modified artificial rearing method leads to poorer performance in spatial learning tasks. Pediatr Res 58:741-748. Manly JJ, Merchant CA, Jacobs DM, Small SA, Bell K, Ferin M, Mayeux R (2000) Endogenous estrogen levels and Alzheimer's disease among postmenopausal women. Neurology 54:833-837. Marszalek JR, Lodish HF (2005) Docosahexaenoic Acid, Fatty Acid--Interacting Proteins, and Neuronal Function: Breastmilk and Fish Are Good for You. Annual Review of Cell & Developmental Biology 21:633-657. Moore SA (1994) Local synthesis and targeting of essential fatty acids at the cellular interface between blood and brain: a role for cerebral endothelium and astrocytes in the accretion of CNS docosahexaenoic acid. World Rev Nutr Diet 75:128-133. Moriguchi T, Salem N (2003) Recovery of brain docosahexaenoate leads to recovery of spatial task performance. Journal of Neurochemistry 87:297-309. Moriguchi T, Greiner RS, Salem N (2000) Behavioral Deficits Associated with Dietary Induction of Decreased Brain Docosahexaenoic Acid Concentration. Journal of Neurochemistry 75:2563-2573. Moriguchi T, Lim SY, Greiner R, Lefkowitz W, Loewke J, Hoshiba J, Salem N, Jr. (2004) Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats. J Lipid Res 45:1437-1445. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60:940-946. Mueller SO, Korach KS (2001) Estrogen receptors and endocrine diseases: lessons from estrogen receptor knockout mice. Current Opinion in Pharmacology 1:613-619. Otto SJ, van Houwelingen AC, Badart-Smook A, Hornstra G (2001) Changes in the maternal essential fatty acid profile during early pregnancy and the relation of the profile to diet. Am J Clin Nutr 73:302-307. Rissman EF, Heck AL, Leonard JE, Shupnik MA, Gustafsson JA (2002) Disruption of estrogen receptor beta gene impairs spatial learning in female mice. Proc Natl Acad Sci U S A 99:3996-4001. Roesch DM (2006) Effects of selective estrogen receptor agonists on food intake and body weight gain in rats. Physiology & Behavior 87:39-44. Rune GM, Frotscher M (2005) Neurosteroid synthesis in the hippocampus: Role in synaptic plasticity. Neuroscience 136:833-842. Salem N, Jr., Moriguchi T, Greiner RS, McBride K, Ahmad A, Catalan JN, Slotnick B (2001) Alterations in brain function after loss of docosahexaenoate due to dietary restriction of n-3 fatty acids. J Mol Neurosci 16:299-307; discussion 317-221. Schonknecht P, Pantel J, Klinga K, Jensen M, Hartmann T, Salbach B, Schroder J (2001) Reduced cerebrospinal fluid estradiol levels are associated with increased [beta]-amyloid levels in female patients with Alzheimer's disease. Neuroscience Letters 307:122-124. Schwartz NB (1964) Acute effects of ovariectomy on pituitary LH, uterine weight, and vaginal cornification. Am J Physiol 207:1251-1259. Sharma PK, Thakur MK (2006) Expression of estrogen receptor (ER) [alpha] and [beta] in mouse cerebral cortex: Effect of age, sex and gonadal steroids. Neurobiology of Aging 27:880-887. Sherwin BB (1999) Can estrogen keep you smart? Evidence from clinical studies. J Psychiatry Neurosci 24:315-321. Sherwin BB (2007) The critical period hypothesis: can it explain discrepancies in the oestrogen-cognition literature? J Neuroendocrinol 19:77-81. Shlomo Yehuda SRDIM (1999) Essential fatty acids are mediators of brain biochemistry and cognitive functions. Journal of Neuroscience Research 56:565-570. Singh M, Meyer EM, Millard WJ, Simpkins JW (1994) Ovarian steroid deprivation results in a reversible learning impairment and compromised cholinergic function in female Sprague-Dawley rats. Brain Research 644:305-312. Soderberg M, Edlund C, Kristensson K, Dallner G (1991) Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26:421-425. Sumino H, Ichikawa S, Murakami M, Nakamura T, Kanda T, Sakamaki T, Mizunuma H, Kurabayashi M (2003) Effects of hormone replacement therapy on circulating docosahexaenoic acid and eicosapentaenoic acid levels in postmenopausal women. Endocr J 50:51-59. Teague WE, Fuller NL, Rand RP, Gawrisch K (2002) Polyunsaturated lipids in membrane fusion events. Cell Mol Biol Lett 7:262-264. Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D, Gibney MJ (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case-control study. Br J Nutr 89:483-489. Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383-402. van Gelder BM, Tijhuis M, Kalmijn S, Kromhout D (2007) Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study. Am J Clin Nutr 85:1142-1147. Wade GN (1972) Gonadal hormones and behavioral regulation of body weight. Physiology & Behavior 8:523-534. Wainwright PE, Huang YS, Coscina DV, Levesque S, McCutcheon D (1994) Brain and behavioral effects of dietary n-3 deficiency in mice: a three generational study. Dev Psychobiol 27:467-487. Woolley CS (1998) Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 34:140-148. Woolley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol 336:293-306. Woolley CS, Weiland NG, McEwen BS, Schwartzkroin PA (1997) Estradiol Increases the Sensitivity of Hippocampal CA1 Pyramidal Cells to NMDA Receptor-Mediated Synaptic Input: Correlation with Dendritic Spine Density. J Neurosci 17:1848-1859. Xu LZ, Sanchez R, Sali A, Heintz N (1996) Ligand specificity of brain lipid-binding protein. J Biol Chem 271:24711-24719. Xu X, Zhang Z (2006) Effects of estradiol benzoate on learning-memory behavior and synaptic structure in ovariectomized mice. Life Sciences 79:1553-1560. Yamaguchi-Shima N, Yuri K (2007) Age-related changes in the expression of ER-[beta] mRNA in the female rat brain. Brain Research 1155:34-41. Yue X, Lu M, Lancaster T, Cao P, Honda S-I, Staufenbiel M, Harada N, Zhong Z, Shen Y, Li R (2005) Brain estrogen deficiency accelerates A{beta} plaque formation in an Alzheimer's disease animal model. PNAS 102:19198-19203. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1-27. Zurkovsky L, Brown SL, Korol DL (2006) Estrogen modulates place learning through estrogen receptors in the hippocampus. Neurobiology of Learning and Memory 86:336-343. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29354 | - |
| dc.description.abstract | 性荷爾蒙雌激素(estrogen)與必需脂肪酸二十二碳六烯酸(22:6n-3, DHA)均為影響腦部神經發育生長與維持功能的重要因子,同時也牽涉阿茲海默氏症的預防與治療。臨床研究發現停經後婦女接受雌激素補充療法後,血漿中的DHA濃度也隨之增加;而擁有高濃度雌激素的懷孕婦女,其體內DHA又比一般女性提高許多。本研究主要探討雌激素能否影響各腦區及周邊組織DHA的存取,進而釐清雌激素與DHA之間的關聯性。
研究方法利用缺乏n-3脂肪酸的飼料建立具有不同DHA層次的雌性Spraque-Dawley大鼠,模擬正常人與阿茲海氏症患者體內的DHA濃度。當雌鼠性成熟後,給予卵巢切除手術(ovariectomy)剝奪體內雌激素,一個月後分別補充富含n-3脂肪酸的魚油或安慰劑(水),再利用Morris水迷宮行為實驗測試雌鼠之空間記憶學習能力。動物於犧牲後收集組織進行下列生化分析:(1)脂肪酸分析,檢測包括海馬迴、嗅球、下視丘、肝臟及紅血球中的DHA含量;(2)雌激素濃度量測;(3)雌激素受體α、β(estrogen receptor α、β)於海馬迴之表現情形。 藉由本論文之實驗結果,發現:(1)缺乏DHA之中年雌鼠,藉由卵巢切除手術剝奪體循環之雌激素濃度,可造成腦區與周邊組織之DHA含量的下降,各組織之流失率以紅血球(36%)最高,其次依序為下視丘(35%)、嗅球(33%)、肝臟(31%),平均衰減幅度到達三成左右;(2)食用正常飼料之中年雌鼠,其腦區不因血漿中雌激素濃度之剝奪而下降,但周邊組織則會;(3)缺乏DHA之成年雌鼠,其腦區及周邊組織中的DHA含量不受血漿中雌激素濃度的下降而改變;(4)利用卵巢切除手術剝奪血漿中雌激素濃度,並不影響腦部雌激素濃度;(5)利用卵巢切除手術剝奪血漿中雌激素濃度會降低海馬迴中雌激素β受體(ERβ)的表現量;(6)利用卵巢切除手術剝奪血漿中雌激素濃度可能影響空間學習記憶的表現。 綜合以上所述,本實驗發現正常飲食情況下,個體卵巢切除後僅對周邊組織的DHA含量造成影響,然在飲食缺乏DHA的情況下,個體本身體循環中雌激素的缺乏將會導致中年動物腦區及周邊組織的DHA含量下降,同時,卵巢切除的處理將降低腦部海馬迴雌激素β受體的表現,但不影響腦部雌激素濃度。本研究之結果可增進對於阿茲海默氏症的了解,釐清雌激素與DHA之重要性,對於雌激素補充療法的機轉提供另一種可能的機制─透過影響腦區DHA濃度而達到預防治療之效。 | zh_TW |
| dc.description.abstract | Background:
Postmenopausal women who take estrogen therapy have higher plasma DHA level and women have higher DHA level in plasma than men, indicating estrogen may play an important role for DHA accumulation in tissues. Aim: The study is to determine whether estrogen deprivation could decrease DHA deposition in brain regions and peripheral tissues. Material and method: DHA deficient rats were created by feeding DHA deficient diet for one generation. The DHA deficient rats (F2) and the chow diet feeding animal (F1) were ovariectomized (OVX) or sham operation either at age of 60 days old as adult group or at age of 8-12 months old as aging group. Animals were sacrificed 2-3 months after the surgery. Results: The DHA level in the brain regions and peripheral tissue of aging F2 was declined after ovariectomy. The loss percentage of DHA compared with the sham operation aging F2 was 36% in erythrocyte, 35% in hypothalamus, 33% in olfactory bulb, 31% in liver. The DHA level in erythrocyte and liver was decreased 25% and 22%, respectively, in the aging F1 after ovariectomy. However, DHA level in the brain regions was not changed. The DHA level in the brain regions and peripheral tissue was not decreased in adult F2 after ovariectomy. Brain estradiol concentration was not reduced after ovariectomy in the aging or the adult groups. However, estrogen receptor β expression in hippocampus was down regulated after ovariectomy in the aging F1 and aging F2 group. Conclusion: The DHA level in the brain regions and peripheral tissues was reduced, ERβ expression was down-regulated, but the brain estradiol concentration was not decreased in the aging DHA deficient rats with ovariectomy. It was suggested that circulation estrogen may play a role in brain DHA accumulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:05:08Z (GMT). No. of bitstreams: 1 ntu-96-R93441003-1.pdf: 840919 bytes, checksum: 3e1dff01420f600070c41bf2c30207b5 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
中文摘要 Ⅰ 英文摘要 Ⅲ 目錄 Ⅴ 表次 Ⅷ 圖次 Ⅸ 第壹章 緒論 1 第一節 雌激素 1 第二節 二十二碳六烯酸 4 第三節 雌激素與DHA之關聯 6 第四節 雌激素、二十二碳六烯酸與阿茲海默氏症 7 第貳章 研究目的 9 第參章 材料與方法 10 第一節 實驗動物與飼養條件 10 第二節 實驗飼料組成 10 1. 自製缺乏n-3脂肪酸飼料 10 2. 飼料脂肪酸組成比較 11 第三節 動物分組與實驗流程 12 1. 建立缺乏n-3脂肪酸之模式動物 12 2. 動物分組 13 (1) 子代實驗流程 14 (2) 親代實驗流程 14 第四節 兩側卵巢切除手術 16 第五節 行為實驗 16 1. 測試空間學習記憶能力 16 2. 水迷宮之建構 16 3. 行為測試之流程 17 (1) 空間學習記憶能力測試 17 (2) 檢測實驗動物視力 18 (3) 記憶保留測驗 18 第六節 動物犧牲 18 第七節 脂肪酸檢測分析 18 1. 藥品來源 18 2. 分析流程 19 第八節 雌激素濃度之量測 20 1. 藥品來源 20 2. 操作流程 21 第九節 海馬迴中雌激素受體之表現情況 23 1. 蛋白質萃取 23 2. 蛋白質定量分析 23 3. 電泳檢定法 24 4. 蛋白質轉印 26 5. 阻隔 27 6. 酵素免疫染色法 28 7. 壓片 29 8. 定量 30 第十節 統計分析 30 第肆章 結果 31 第一節 以生物性指標檢驗卵巢切除手術之效力 31 第二節 空間學習記憶能力 32 第三節 各子代之脂肪酸組成分析 38 第四節 腦部雌激素之測量 45 第五節 比較海馬迴中雌激素受體之表現 46 第伍章 討論 49 第一節 模式動物的選擇 49 第二節 卵巢切除對個體DHA的影響 50 第三節 卵巢切除對腦部雌激素濃度的影響 53 第四節 卵巢切除對海馬迴中雌激素受體的影響 54 第五節 卵巢切除對空間記憶之影響 55 第陸章 結論 57 第柒章 參考文獻 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 二十二碳六烯酸 | zh_TW |
| dc.subject | 阿茲海默氏症 | zh_TW |
| dc.subject | 空間學習記憶 | zh_TW |
| dc.subject | 雌激素 | zh_TW |
| dc.subject | estrogen | en |
| dc.subject | spatial learning memory | en |
| dc.subject | DHA | en |
| dc.title | 探討雌激素對腦區二十二碳六烯酸含量與空間學習記憶之影響 | zh_TW |
| dc.title | Effect of Estrogen on Brain Docosahexaenoic Acid Level and Spatial Learning Memory Performance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃青真(Ching-Jang Huang),呂紹俊(Shao-Chun Lu),胡孟君(Meng-Chun Hu) | |
| dc.subject.keyword | 雌激素,二十二碳六烯酸,空間學習記憶,阿茲海默氏症, | zh_TW |
| dc.subject.keyword | estrogen,DHA,spatial learning memory, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| Appears in Collections: | 生理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-96-1.pdf Restricted Access | 821.21 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
