請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29343
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張所鋐(Shuo-Hung Chang) | |
dc.contributor.author | Bin-Chen Wei | en |
dc.contributor.author | 魏炳誠 | zh_TW |
dc.date.accessioned | 2021-06-13T01:04:56Z | - |
dc.date.available | 2007-07-27 | |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | [1] W.R. Davis, R.J. Slawson, G.R. Rigby, “An unusual form of carbon,” Nature 171 (1953) 756.
[2] M. Hillert, N. Lange, Z. Kristallogr. 111 (1958) 24. [3] R.T.K. Baker, M.A. Barbber, P.S. Harris, F.S. Feates, R.J. Waite, ”Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,“ J. Catal. 26 (1972) 51. [4] H.P. Boehm, ” Carbon from carbon monoxide disproportionation on nickel and iron catalysts: morphological studies and possible growth mechanisms,“ Carbon 11 (1973) 583. [5] S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga , “Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics,“ Appl. Phys.Lett. 56 (1990) 321. [6] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A.A. Lucas, “Fe-catalyzed carbon nanotube formation,“ Carbon 34 (1996) 1249. [7] X. Chen, S. Motojima, “Morphologies of Carbon Micro-coils Grown by Chemical Vapor Deposition,“ J. Mater. Sci. 34 (1999) 5519. [8] R.T.K. Baker, P.S. Harris, S. Terry, ” Unique form of filamentous carbon,“ Nature 253 (1975) 37. [9] C.A. Bernardo, I. Alstrup, J.R. Rosytup-Nielsen, ”Carbon deposition and methane steam reforming on silica-supported Ni---Cu catalysts,“ J. Catal. 96 (1985)517. [10] M.S. Kim, N.M. Rodriguez, R.T.K. Baker, ” The role of interfacial phenomena in the structure of carbon deposits,“ J. Catal. 134 (1992)253. [11] N. Krishnankutty, C. Park, N.M. Rodriguez, R.T.K. Baker, ”The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene,“ Catal.Today 37 (1997) 295. [12] V.V. Chesnokov, V.I. Zaikovskii, R.A. Buyanov, “Symmetric twisted carbon filaments formed from butadiene-1,3 on Ni–Cu/MgO-catalyst: growth regularities and mechanism,“ J. Mol. Catal.A 158 (2000) 267. [13] Y. Hishikawa, C. Kuzuya, S. Hirako, W.I. Hwang, S. Motojima,Trans. Mater. Res. Soc. Jpn. 27 (2002) 39. [14] S. Motojima, X. Chen, S. Yang, M. Hasegawa, ”Preparation of whiskers and spring-like fibres of Si3N4 by impurity-activated chemical vapor deposition,“ Diamond and related materials 13(2004)1989-1992 [15] S. Motojima, H. Asano and H. Iwanaga, “Preparation of micro-coiled ZrC fibres by vapour phase metallizing of micro-coiled carbon fibres,“ J. Eur. Ceram. Soc. 16 (1996), p. 989 [16] X. Chen, S. Motojima and H. Iwanaga, “Vapor phase preparation of super-elastic carbon micro-coils,“ J. Cryst. Growth 237 (2002) 1931. [17] K. Kaneto, M. Tsuruta and S. Motojima, “Electrical properties of carbon micro coils,“ Synth. Metals 103 (1999) 2578. [18] X. Chen, S. Motojima and H. Iwanaga, ” Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties,“ Carbon 37 (1999) 1825. [19] X. Chen, W.I. Hwang, S. Shimada, M. Fujii, H. Iwanaga and S. Motojima, “High-temperature heat treatment of carbon microcoils obtained by chemical vapor deposition process and their properties,“ J. Mater. Res. 15 (2000) 808 [20] X. Chen, S. Zhang, D.A. Dikin, W. Ding, R.S. Ruoff, L. Pan and Y. Nakayama, ” Mechanics of a carbon nanocoil,“ Nano Lett. 3 (2003) 1299. [21] L. Pan, T. Hayashida, M. Zhang and Y. Nakayama, Jpn. J. Appl. Phys. 40 (2001) 235. [22]S. Motojima, T. Hamamoto, N. Ueshima, Y. Kojima and H. Iwanaga, “Preparation and properties of ceramic micro-coils by CVD process,“ Electrochem. Soc. Proc. 25 (1997) 433. [23] J.H. Du, C. Sun, S. Bai, G. Su, Z. Ying and H.M. Cheng, “Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin was composite in Ku band,“ J. Mater. Res. 17 (2002) 1232. [24] S. Motojima, W.I. Hwang, T. Kuzuya and H. Iwanaga, J. Mater. Sci. 36 (2001) 71. [25] K. Shibagaki and S. Motojima, ” Thermal behavior and effect of heat treatment in an inert gas on oxidized carbon microcoils,“ Carbon 39 (2001) 411. [26] S. Yang , X. Chen, S. Motojima, M. Ichihara ,” Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts,” Carbon 43 (2005) 827. [27] S. Motojima, Q Chen,” Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition,” J. Appl. Phys. 85 (1999) 3919. [28]M. Zhang, Y. Nakayama, L. Pan,” Synthesis of nano tubule nanocoils in high yield using iron-coated indium tin oxide as catalyst,” Jpn. J. Appl. Phys. 39 (2000) 1242. [29] N. Okazaki, S. Hosokawa, T. Goto, Y. Nakayama,” Synthesis of carbon tubule nanocoils using Fe-In-Sn-O fine particles as catalysts,” J. Phys. Chem. B 109 (2005) 17366. [30] M. Lu, W.M. Liu, X.Y. Guo, H.L. Li,” Coiled carbon nanotubes growth via reduced-pressure catalytic chemical vapor deposition ,” Carbon 42 (2004) 805. [31] S. Yang, X. Chen, T. Katsuno, S. Motojima,” Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process,” Mater. Res. Bull. 42 (2007) 465. [32] C. Kuzuya, Y. Hishikawa, S. Motojima,” Preparation of carbon micro-coils by ultrasonic wave VCD,” J. Chem. Eng. Jpn. 35 (2002) 144. [33] W. In-Hwang, H. Yanagida, S. Motojima,” Vapor growth of carbon micro-coils by the Ni catalyzed pyrolysis of acetylene using rotating substrate,” Mater. Lett. 43 (2000) 11. [34] G. Xu, B. Chen, H. Shiki, T. Katsumata, H. Takikawa, T. Sakakibara, S. Itoh and T. Ina,” Parametric study on growth of carbon nanocoil by catalytic chemical vapor deposition,” Jpn. J. Appl. Phys. 44 (2005) 1569. [35] Y. Kajuhara, T. Hihara, K. Sumiyama and S. Motojima,” Electrical resistivity of carbon micro coil measured by a multi-probe unit installed in a scanning electron microscope,” Jpn. J. Appl. Phys. 44 (2005) 6867. [36] Y. Kato, N. Adachi, T. Okuda, T. Yoshida, S. Motojima and T. Tsuda,” Evaluation of induced electromotive force of a carbon micro coil,” Jpn. J. Appl. Phys. 42 (2003) 5035. [37] K. Yamamotoa, T. Hirayamab, M. Kusunokib, S. Yang, S. Motojima,” Electron holographic observation of micro-magnetic fields current-generated from single carbon coil,” Ultramicroscopy 106 (2006) 314. [38] X. Chen, S. Zhang, Dmitriy. A. Dikin, W. Ding, Rodney S. Ruoff, L. Pan , Y. Nakayama,” Mechanics of a carbon nanocoil,” Nano Lett. 3 (2003) 1299. [39] Y. Kato, T. Kojima, H. Miwa, T. Tsuda, T. Yoshida, S. Motojima,” Expanding and contracting motions of carbon micro-coils induced by alternating current,” Jpn. J. Appl. Phys. 45(2006) 2695. [40] J. Liu, S. Webster, D. L. Carroll,” Highly aligned coiled nitrogen-doped carbon nanotubes synthesized by injection-assisted chemical vapor deposition,” Appl. Phys. Lett. 88 (2006) 213119. [41]E. Einarsson, D.W. Tuggle, J. Jiao,” In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field,” Appl. Phys. A 79 (2004) 2049. [42] Alexandre F. da Fonseca, Douglas S. Galva,” Mechanical properties of nanosprings,” Phys. Rev. Lett. 92 (2004) 175502-1. [43] W. Lu,” Quantum conductance of a helically coiled carbon nanotube,” Sci. Technol. Adv. Mat. 6 (2005) 809. [44] Dominik J. Bell, Lixin Dong, Yu Sun, Li Zhang, Bradley J. Nelson, and D. Grützmacher,” Manipulation of nanocoils for nanoelectromagnets,” Proceedings of 2005 5th IEEE Conference on Nanotechnology Nagoya, Japan, July 2005. [45] J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui,” Growth of three-dimensional nano-structures using FIB-CVD and its mechanical properties,” Nuclear Instruments and Methods in Physics Research B 206 (2003) 472. [46] Ahsan Choudhuri, Jorge Camacho, and Jack Chessa,” Flame Synthesis of Coiled Carbon Nanotubes,” Fullerenes, Nanotubes, and Carbon Nanostructures, 14 (2006) 93. [47] R.T. Baker, P.S. Harris, S. Terry ,” Unique form of filamentous carbon,” Nature, 253(1975)37. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29343 | - |
dc.description.abstract | 使用以二元素鐵與錫所組成之催化劑,結合化學氣相沈積法,可以成功生長碳螺旋線圈。催化劑的調配方式可以用酒精作為溶劑,混合醋酸鐵與醋酸錫,稱為溶液催化劑;或者使用電子束蒸鍍機,將鐵薄膜與錫薄膜蒸鍍在試片上,此種調配出的催化劑稱為薄膜催化劑。由溶液催化劑所成長之線圈外徑在100nm∼1100nm,線徑在100nm∼300nm,螺距在100nm∼1400nm;而以薄膜催化劑成長者線圈外徑<600nm,線徑<200nm,螺距<800nm。成長結果已由SEM與TEM檢測。二元成長機制在於使用可以成長碳管的鐵以及促使碳管蜷曲進而形成螺旋狀的線圈。相較於三元成長,其優點是製程簡單,且易於分析其成長模式。另外研究發現催化劑厚度影響碳螺旋線圈生長之平均尺寸與尺寸分佈,因此使用厚度較厚的溶液催化劑會成長出尺寸較大之碳螺旋線圈。
本文還研究以微機電製程製作出微小催化劑區塊,使碳螺旋線圈生長範圍侷限,已得到在催化劑區塊中僅有單根長度超過10微米之碳螺旋線圈。此結果對於往後鑑定以及定位碳螺旋線圈都有相當大的助益。 | zh_TW |
dc.description.abstract | Using two metal elements, iron and tin, to prepare catalyst and combine chemical vapor deposition (CVD) process can grow carbon coils successfully. There are tow methods to prepare catalyst. One is to mix iron acetate with tin acetate, and use alcohol as solvent to dissolve these two powders. Such a catalyst is called solution catalyst. The other method is to coat iron film and tin film on wafer by e-beam evaporator directly. This catalyst is named thin film catalyst. Coils grown by solution catalyst have coil diameter 100 nm~1100 nm, fiber diameter 100 nm~300 nm, and pitch 100 nm~1400 nm; While by thin film catalyst have coil diameter <600 nm, fiber diameter <200 nm, pitch <800 nm. Results have been observed by SEM and TEM. Iron is the key to grow carbon tubes. Tin makes carbon tubes become spiral shape. Advantages of tow-element growth of carbon coils are that the process is more convenient and it’s easy to analyze the growth model of carbon coils. It has been researched thickness of catalyst is a key point to effect average coil size and it’s range. Using solution catalyst can grow carbon coils which have larger size.
Another part of this research is to make small patterns by micro electron mechanics (MEMs) process and let carbon coils grow inside the pattern. Single carbon coil whose length is above 10 μm can be got in the patterned area. This research can help assaying and locating carbon coils. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:04:56Z (GMT). No. of bitstreams: 1 ntu-96-R94522604-1.pdf: 8682835 bytes, checksum: e15bbf6486bc5b88c9a5fb6cf02e54f7 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 vi 第1章 緒論 1 1.1前言 1 1.2 研究動機與目標 2 第2章 文獻回顧 5 2.1碳螺旋線圈製備方式 5 2.1.1 利用鐵鉻錳鉬合金成長碳螺旋線圈 5 2.1.2 使用鐵、銦、錫三種元素來成長碳螺旋線圈 7 2.1.3 用Co(CH3COO)2 . 4H2O做為催化劑來成長碳螺旋線圈 9 2.2 其他生長碳螺旋線圈之方式 10 2.3 碳螺旋線圈的性質量測 11 2.4 方向性定位碳螺旋線圈 15 第3章 溶液催化劑生長碳螺旋線圈 18 3.1實驗流程與設備 18 3.2 溶液催化劑調配流程 26 3.3 催化劑比例結果討論 27 3.4 碳螺旋線圈外型與尺寸分析 36 3.5溶液催化劑TEM圖分析 39 第4章 薄膜催化劑生長碳螺旋線圈 44 4.1 使用鍍膜方式成長碳螺旋線圈的原因 44 4.2 實驗設計與實驗架構 45 4.3 實驗結果討論 48 4.4 薄膜催化劑生長碳螺旋線圈之電子穿遂圖分析 68 4.5 溶液催化劑與薄膜催化劑生長碳螺旋線圈之比較 72 第5章 微小催化劑區塊成長碳螺旋線圈 81 5.1 規劃微小催化劑區塊之原因 81 5.2 實驗設計與流程 83 5.3 實驗結果與討論 86 第6章 結論與未來展望 95 6.1 結論 95 6.2 未來展望 97 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 二元催化劑成長碳螺旋線圈及其製程分析探討 | zh_TW |
dc.title | Process of Carbon Coils Growth by Two-Element Catalyst | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 施文彬(Wen-Pin Shih),蔡曜陽(Yao-Yang Tsai),張家歐(Chia-Ou Chang) | |
dc.subject.keyword | 碳螺旋線圈,化學氣相沈積法,電子束蒸鍍機,微機電製程, | zh_TW |
dc.subject.keyword | carbon coil,chemical vapor deposition,e-beam evaporator,MEMs, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 8.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。