Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡珊珊(SanSan Tsay)
dc.contributor.authorHsin-Lun Tsaien
dc.contributor.author蔡欣倫zh_TW
dc.date.accessioned2021-06-13T01:04:38Z-
dc.date.available2012-07-26
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-22
dc.identifier.citationAlfredsson, G. A. & Kristjansson, J. K. (1995). Ecology, distribution, and isolation of Thermus, In Thermus species, pp. 43-63. Edited by R. Sharp & R. A. D. Williams. New York: Plenum Press.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.
Anderson, A. W., Nordan, H. C., Cain, R. F., Parrish, G. & Duggan, D. (1956). Studies on a radio-resistant micrococcus. I. Isolation, morphology, culture characteristics, and reisitance to gamma radiation. Food Technol 10, 575-578.
Battista, J. R. (1997). Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51, 203-24.
Bequin, P. (1983). Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131, 333–336.
Brock, T. D. & Freeze, H. (1969). Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98, 289-297.

Brook, B. W. and Murray, R. G. E. (1981). Nomeenclature for “ mirococcus radiodurans: and other radiation- resistance cocci: Deinococcaceae fam. Nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31, 353-360.
Buyer, J. S. (2002). Rapid sample processing and fast gas chromatography for identification of bacteria by fatty acid analysis. J Microbiolog Methods 51, 209-215.
Carreto, L., Moore, E., Nobre, M. F., Wait, R., Riley, P. W., Sharp, R. J. & da Costa, M. S. (1996). Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46, 460–465.
Cappuccino, J. G. & Sherman, N. (1998). Microbiology: A Laboratory Manual. 5th ed. The Benjamin/Cummings Publishing Company, Inc., New York.
Chen, M. Y., Lin, G. H., Lin, Y. T. & Tsay, S. S. (2002a). Meiothermus taiwanensis sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. Int J Syst Evol Microbiol 52, 1647-1654.
Chen, M. Y., Tsay, S. S., Chen, K. Y., Shi, Y. C., Lin, Y. T. & Lin, G. H. (2002b). Pseudoxanthomonas taiwanensis sp. nov., a novel thermophilic, N2O-producing species isolated from hot springs. Int J Syst Evol Microbiol 52, 2155-2161.
Chen, M. Y. (2002). Studies of Thermophilic Bacteria from Geothermal Areas in Taiwan. PhD thesis, Institute of Plant Biology, National Taiwan University.
Chen, M. Y., Wu, S. H., Lin, G. H., Lu, C. P., Lin, Y. T., Chang, W. C. & Tsay, S. S. (2004). Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54, 1849-1855.
Chen, W. M., Chang, J. S., Chiu, C. H., Chang, S. C., Chen, W. C. & Jiang, C. M. (2005). Caldimonas taiwanensis sp. nov., a amylase producing bacterium isolated from a hot spring. Syst Appl Microbiol 28, 415-420.
Chen, T. L., Chou, Y. J., Chen, W. M., Arun, B. & Young, C. C. (2006). Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10, 35-40.
Chien, A., Edgar, D.B. & Trela, J.M. (1976). DNA polymerase from the extreme thermophile Thermus aquaticus. J Bacterol 127, 1550-1557.
Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C. & Shin, Y. C. (2004). Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 70, 4522-4531.
Chung, A. P., Rainey, F. A., Valente, M., Nobre, M. F. & da Costa, M. S. (2000). Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50, 209-217.
Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) version 3.61.
Clinical and Laboratory Standards Institute (CLSI, former NCCLS). (2004). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Information Supplement (May 2004), CLSI document M31-S1. CLSI, Wayne, PA.
Cohan, F. M. (2002). What are bacterial species? Annu Rev Microbiol 56, 457-487.
da Costa, M.S. & Rainey, F.A. (2001). The family Thermaceae, 2nd ed In: Bergey’s Manual of Systematic Bacteriology (Boone, D.R. and Castenholz, R.W., Eds.), vol. 1, pp. 403–404. Springer, New York, NY.

Cox, M. M., and Battista, J. R. (2005). Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3, 882-892.
Fan, J. C. (2003). Radiation resistant Thermophilic Deinococcus isolated from hot springs, Taiwan. Master Thesis, Institute of Botany, National Taiwan University.
Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package) version 3.61.
Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. (1997). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939-947.
Galtier, N. & Lobry, J. R. (1997). Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44, 632-636.
Haki, G.D. & Rakshit, S.K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89, 17-34.
Hobel, C. F., Hreggvidsson, G. O., Marteinsson, V. T., Bahrani-Mougeot, F., Einarsson, J. M. & Kristjansson, J. K. (2005). Cloning, expression, and characterization of a highly thermostable family 18 chitinase from Rhodothermus marinus. Extremophiles 9, 53-64.
Holtke, H. J., Ankenbauer, W., Muhlegger, K., Rein, R., Sagner, G., Seibl, R. & Walter, T. (1995). The digoxigenin (DIG) system for non-radioactive labelling and detection of nucleic acids--an overview. Cell Mol Biol (Noisy-le-grand) 41, 883-905.
Hoppert, M. & Holzenburg, A. (1998). Electron Microscopy in Microbiology. Guildford, UK: BIOS Scientific Publisher.
Hsu, C. J. (2005) Studies of Radioresistant Thermophilic Bacteria from Geothermal Areas in Taiwan. Master Thesis, Institute of Plant Biology, National Taiwan University.
Humble, M. W., King, A. & Phillips, I. (1977). API ZYM: a simple rapid system for the detection of bacterial enzymes. J Clin Pathol 30, 275-277.
Johnson, J. L. (1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655-682. Edited by P. Gerhardt. Washington, D.C.: American Society for Microbiology.
Kashefi, K. & Lovley, D.R. (2003). Extending the upper temperature limit for life. Science 301, 934.
Kessler, C., Holtke, H. J., Seibl, R., Burg, J. & Muhlegger, K. (1990). Non-radioactive labeling and detection of nucleic acids. I. A novel DNA labeling and detection system based on digoxigenin: anti-digoxigenin ELISA principle (digoxigenin system). Biol Chem Hoppe Seyler 371, 917-927.
Kim, H. M., Ryu, K. E., Bae, K. & Rhee, Y. H. (2000). Purification and characterization of extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J Biosci Bioeng 89, 196-198.
Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleaotide sequence. J Mol Evol 16, 111-120.
Lapage, S. P., Shelton, J. E. & Mitchell, T. G. (1970). Midia for the maintenance and preservation of bacteria. In Methods in Microbiology, pp. 1-133. Edited by J. R. Norris & D. W. Ribbons. Lodon ; New York: Academic Press.
Madigan, M. T. & Marrs, B. L. (1997). Extremophiles. Sci Am 276, 82-87.
Manaia, C. M. & da Costa, M. S. (1991). Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J Gen Microbiol 137, 2643-2648.
Marteinsson, V. T., Hauksdottir, S., Hobel, C. F., Kristmannsdottir, H., Hreggvidsson, G. O. & Kristjansson, J. K. (2001). Phylogenetic diversity analysis of subterranean hot springs in Iceland. Appl Environ Microbiol 67, 4242-4248.
Mattimore V. & Battista, J. R. (1996). Radioresistance of Deinococcus radiodurans:Functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178, 633-637.
Mesbah, M. & Whitman, W. B. (1989). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine - cytosine of DNA. J Chromatogr 479, 297-306.
Niehaus, F., Bertoldo, C., Kahler, M. & Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51, 711-729.
Oshima, T. (1974). Comparative studies on biochemical properties of an extreme thermophile, Thermus thermophilus HB 8 (author's transl). Seikagaku 46, 887-907.
Pantazaki, A. A., Pritsa, A. A. & Kyriakidis, D. A. (2002). Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58, 1-12.
Rainey, F.A., Ray, K., Ferreira, M., Gatz, B.Z., Nobre, M.F., Bagaley, D., Rash, B.A., Park, M.J., Earl, A.M., Shank, N.C., Small, A.M., Henk, M.C., Battista, J.R., Kampfer, P. and da Costa, M.S. (2005). Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71, 5225-5235.
Price, C. P. (1983). Enzymes as reagents in clinical chemistry. Philos Trans R Soc Lond B Biol Sci 300, 411-422.
Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
Sambrook, J. & Russell, D. W. (2001). Molecular cloning : a laboratory manual. Cold Spring Harbor, N. Y., USA: Cold Spring Harbor Laboratory Press.
Schiraldi, C. & De Rosa, M. (2002). The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20, 515-521.
Sperandio, V., Torres, A. G. & Kaper, J. B. (2002). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43, 809-821.
Shieh, W. Y. (1993). A halophilic thermophilic bacterium isolated from a coastal hot spring in Lutao, Taiwan. J Gen Microbiol 139, 2505-2510.
Shieh, W. Y. & Jean, W. D. (1998). Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44, 637-645.
Shieh, W. Y., Jean, W. D., Lin, Y. T. & Tseng, M. (2003). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49, 244-252.
Suzuki, K., Collins, M. D., Iijima, E. & Komagata, K. (1988). Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52, 33–40.
Uemori, T., Sato, Y., Kato, I., Doi, H. & Ishino, Y. (1997). A novel DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus; gene cloning, expression, and characterization. Genes Cells 2, 499-512.
Woese, C. R. & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74, 5088-5090.
Williams, R. A., Smith, K. E., Welch, S. G., Micallef, J. & Sharp, R. J. (1995). DNA relatedness of Thermus strains, description of Thermus brockianus sp. nov., and proposal to reestablish Thermus thermophilus (Oshima and Imahori). Int J Syst Bacteriol 45, 495-499.
Woese, C. R., Kandler, O. & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576-4579.
Yoshinaka, T., Yano, K. & Yanaguchi, H. (1973). Isolation of a highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37, 2269–2275.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29327-
dc.description.abstract本研究室曾自台灣地熱環境中分離出許多具有輻射線抗性的細菌,其中也包含Rubrobacter 屬的嗜熱菌。Rubrobacter 屬的細菌具有相當強的抗輻射能力,但研究資料卻不多,至今僅有少數Rubrobacter 屬的新菌種被研究與發表。根據 16S rRNA 基因序列分析結果顯示,至今在台灣十個地熱區中總共有32 株屬於Rubrobacter 屬的菌株被分離出。
本研究主要集中於兩群可能屬於Rubrobacter 屬新菌種的六株細菌做詳細的特性分析並加以鑑定。此六株新分離株皆屬於革蘭氏陽性的嗜熱菌,而且都具有抗輻射線的特性。根據遺傳、形態及生理生化特性的分析,顯示第一群來自丹大溫泉的新分離株NTU-806 、 NTU-807 及 NTU-808 為Rubrobacter taiwanensis。而第二群新分離株 NTU-829 、 NTU-1106 、 NTU-1119 與 R. radiotolerans在 16S rRNA 序列相似度為 94 %、DNA-DNA 雜合反應的結果為 26-29 % 間。第二群新分離株的最適生長溫度為 50 ℃ ,最適鹽度為0-7 % ;而標準菌株 R. radiotolerans 則分別為 40 – 50 ℃ 與0-3 % 鹽度之間。此外,相較於R. radiotolerans 而言,第二群的三株分離菌株含有較高含量的 18 碳及19 碳含支鏈飽和脂肪酸。故根據遺傳、形態及生理生化特性等實驗結果,初步鑑定NTU-829 、 NTU-1106 、 NTU-1119 為 Rubrobacter 屬的新菌種。
zh_TW
dc.description.abstractIn the previous studies, several genera of thermophilic bacteria with radiation resistance were isolated from geothermal environments in Taiwan by our laboratory. Though Rubrobacter spp. exhibited extreme radiation resistance, but only a few species had been isolated and studied. According to 16 S rRNA gene sequence analysis, 32 strains of thermophiles belong to genus Rubrobacter were isolated and partially characterized from ten geothermal areas in Taiwan.
In this study, we focus on two groups containing six isolates that had the potential to be new species in genus Rubrobacter for further characterization and identification. These new isolates were Gram positive thermophiles with the ability to resist radiation. According to genetic, morphological, physiological and biochemical properties, group 1 isolates NTU-806, NTU-807, and NTU-808 from Danda were identified as R. taiwanensis. Group 2 isolates NTU-829, NTU-1106, and NTU-1119 showed 94 % 16S rRNA gene sequence similarities and 26-29% DNA-DNA similarities to R. radiotolerans. These three isolates grew optimally at 50 oC, and in the medium containing 0-7 % (w/v) NaCl, while R. radiotolerans at 45 oC and 0-3% NaCl. The new isolates from group 2 contained higher amount of 18:0 anteiso and 19:0 anteiso fatty acids than R. radiotolerans. Based on DNA homology, 16S rRNA gene sequence, as well as physiological and biochemical analyses, strains NTU-829, NTU-1106, and NTU-1119 could be identified as a novel species of genus Rubrobacter.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:04:38Z (GMT). No. of bitstreams: 1
ntu-96-R94b42018-1.pdf: 3204959 bytes, checksum: 6ba28855fe3793d067742fdc27a2ebdc (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContent
中文摘要 ………………………………………………………………….…..…..…. i
英文摘要 ………………………………………………………………..……..…..….. ii
Abbreviations …. ………………………………………………………………..….. iii
List of figures ...…………………………...……………………………...…………. iv
List of tables ...…………………..…………………………………………………… v
Chapter 1 Introduction ………….……………………….......................……….. 1
1.1 Thermophiles ……………………………………………………...……… 1
1.2 Applications and potential of thermophiles ……………......…..…………. 2
1.3 Studies on thermophilic bacteria in Taiwan ……….……….……..….…… 3
1.4 Radiation resistance bacteria ……….………………………….…..……… 4
1.5 Radiation resistance thermophiles in Taiwan …………………...……....… 5
1.6 Genus Rubrobacter……….……………………………….………….…… 5
1.7 Objectives and approach ……….…………………………………….…… 6
Chapter 2 Materials and Methods …….………………….….………...….…….. 7
2.1 Materials ……….……………………………….…………..………..….… 7
2.1.1 Media used in this study ...……….…………………....………..….… 7
2.1.2 Bacteria strains used in this study………...….…….…………….…… 7
2.1.3 Materials ……….……..…………………………………….…..……. 8
2.1.4 Instruments ……….……………………………………….…….....… 8
2.2 Sampling and isolation ……………………………………….…...….…… 9
2.2.1 Sampling sites..…….………………………………….……………… 9
2.2.2 Isolation, purification and preservation of bacteria strains …….....… 10
2.3 Characterization and identification of bacteria strains……….…...…....… 10
2.3.1 Morphological characteristics ………..…………………………...… 10
2.3.1.1 Colony morphology ………………………………………...… 10
2.3.1.2 Gram staining ……….……………..……………………..…… 11
2.3.1.3 Transmission electron microscopy ……...…..….…………..… 11
2.3.2 Physiological and chemical characteristics ………………….……… 11
2.3.2.1 Effect of temperature, pH, and salt on growth ……..............… 11
2.3.2.2 Enzymatic assay ……….……………………………...……… 12
2.3.2.3 API-ZYM test …………………………..………………..…… 14
2.3.2.4 Single carbon sources utilization assay……………………..… 14
2.3.3 Antibiotic susceptibility ……….………………………...……….… 14
2.3.4 Fatty acids composition …………...……………………………...… 15
2.3.5 Radiation resistance ……….…………………………..……….…… 16
2.3.5.1 UV-radiation resistance …………………………………….… 16
2.3.5.2 Gamma-radiation resistance..…………………….....………… 16
2.3.6 Genetic characteristics……….…………………………............…… 17
2.3.6.1 DNA extraction……….………………………………….....… 17
2.3.6.2 PCR amplification of 16S rRNA gene ……...………….......… 17
2.3.6.3 16S rRNA gene sequence based phylogenetic analysis………. 18
2.3.6.4 Determination of DNA G+C content …………….….……..… 19
2.3.6.5 DNA homology ……….……………………..…….…………. 19
Chapter 3 Result ……….………………………………………….…..……..… 21
3.1 Sampling sites and isolation of bacteria …..............………..….…..… 21
3.2 Characterization and identification of bacteria strains ………….......…… 21
3.2.1 Morphological characteristics ……….…………………….…...…… 21
3.2.1.1 Colony morphology ………………………………...…....…… 21
3.2.1.2 Gram staining ….….………………………………....……..… 22
3.2.1.3 Transmission electron microscopy ……….………...……... … 22
3.2.2 Physiological and biochemistry characteristics …..…….……...…… 22
3.2.2.1 Effect of temperature, pH and salt on growth ………...……… 22
3.2.2.2 Enzymatic assay …….………………….………………..…… 23
3.2.2.3 API-ZYM test ………………...…………………..….…..…… 23
3.2.2.4 Single carbon sources utilization assay .……………..…..…… 24
3.2.3 Antibiotic susceptibility ……….…………………….….……......… 25
3.2.4 Fatty acids composition ..…….……………………………….….… 26
3.2.5 Radiation resistance ……….………………………….…………..… 26
3.2.5.1 UV-radiation resistance ………………………..…..…...…..… 26
3.2.5.2 Gamma-radiation resistance ………………………....……..… 26
3.2.6 Genetic characteristics ……….…………………….…………......… 27
3.2.6.1 PCR amplification of 16S rRNA gene ……………….…......… 27
3.2.6.2 Determination of DNA G+C content ……….…...…...…….… 28
3.2.6.3 DNA homology …………………………………..…...……… 28
3.2.6.4 16S rRNA gene sequence based phylogenetic analysis …...….. 29
Chapter 4 Discussion ……….……………………………..……………..…..… 30
4.1 Rubrobacter radiotolerans related bacteria ………………...…...…….… 30
4.2 Rubrobacter taiwanensis related bacteria ……….……………….…....… 32
4.3 Radiation resistance ……….……………………………..……………… 34
4.4 Conclusion ………………..…………………...………..………….….… 36
References ………………………………………….…………………………….… 38
Figures …………………………………….………………...…….………………... 43
Tables …………………………………………………...………….………….…… 52
Appendix …………………………………………………...……........……….…… 65
dc.language.isoen
dc.title台灣地熱區抗輻射 Rubrobacter 屬細菌之研究zh_TW
dc.titleStudies on Radiation Resistant Rubrobacter spp.
from geothermal areas in Taiwan
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝文陽(Win-Yang Shieh),何國傑(Kuo-Chieh Ho),林光慧(Guang-Huey Lin)
dc.subject.keyword抗輻射,嗜熱菌,溫泉,zh_TW
dc.subject.keywordRubrobacter,Radiation resistance,Thermophiles,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved