請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29291
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧佳遇,喬凌雲,胡植慶 | |
dc.contributor.author | Fang-Lin Wang | en |
dc.contributor.author | 王芳琳 | zh_TW |
dc.date.accessioned | 2021-06-13T01:04:00Z | - |
dc.date.available | 2007-07-30 | |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | References
Allen, M. and Tildesley, D., 1987. Computer simulation of liquids. Oxford Science Publications, Oxford. Antonellini, M.A. and Pollard, D.D., 1995. Distinct element modeling of deformation bands in sandstone. Journal of Structural Geology, 17(8): 1165-1182. Bally, A.W., Gordy, P.L. and Stewart, G.S., 1966. Structure, seismic data and orogenic evolution of the southern Canadian Rockies, Bulletin of Canadian Petroleum Geology, pp. 337-381. Bardet, J.P. and Proubet, J., 1992. The structure of shear bands in idealized granular materials. Applied Mechanics Reviews, 45(3(2)): S118-S122. Barr, T.D. and Dahlen, F.A., 1990. Constraints on friction and stress in the Taiwan fold-and-thrust belt from heat-flow and geochronology. Geology, 18(2): 111-115. Beaumont, C., Fullsack, P. and Hamilton, J., 1994. Styles of crustal deformation in compressional orogens caused by subduction of the underlying lithosphere. Tectonophysics, 232(1-4): 119-132. Burbidge, D.R. and Braun, J., 1998. Analogue models of obliquely convergent continental plate boundaries. Journal of Geophysical Research-Solid Earth, 103(B7): 15221-15237. Burbidge, D.R. and Braun, J., 2002. Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method. Geophysical Journal International, 148(3): 542-561. Camborde, F., Mariotti, C. and Donze, F.V., 2000. Numerical study of rock and concrete behaviour by discrete element modelling. Computers and Geotechnics, 27(4): 225-247. Cobbold, P.R. and Castro, L., 1999. Fluid pressure and effective stress in sandbox models. Tectonophysics, 301(1-2): 1-19. Cobbold, P.R., Durand, S. and Mourgues, R., 2001. Sandbox modelling of thrust wedges with fluid-assisted detachments. Tectonophysics, 334(3-4): 245-258. Cundall, P.A. and Strack, O.D.L., 1979. Discrete numerical-model for granular assemblies. Geotechnique, 29(1): 47-65. Dahlen, F.A., 1990. Critical taper model of fold-and thrust belts and accretionary wedges. Annual Reviews of Earth and Planeray Sciences, 18: 55-99. Dahlen, F.A., Davis, D. and Suppe, J., 1984. Mechanics of fold-and-thrust belts and accretionary wedges : cohesive coulomb wedges theory. Journal of Geophysical Research, 89: 10087-10101. Dahlen, F.A. and Suppe, J., 1988. Mechanics, growth and erosion of mountain belts. Geological Society of America Special Paper, 218: 161-178. Davis, D., Suppe, J. and Dahlen, F.A., 1983. Mechanics of fold and thrust belts and accretionary wedges. Journal of Geophysical Research, 88: 1153-1172. Donze, F., Magnier, S.A. and Bouchez, J., 1996. Numerical modeling of a highly explosive source in an elastic-brittle rock mass. Journal of Geophysical Research -Solid Earth, 101(B2): 3103-3112. Goldburg, B. 1982. Formation of critical taper wedges by compression in a sandbox model. BS thesis. Princeton Univ., Princeton, N.J. 70 pp. Finch, E., Hardy, S. and Gawthorpe, R., 2003. Discrete element modelling of contractional fault-propagation folding above rigid basement fault blocks. Journal of Structural Geology, 25(4): 515-528. Finch, E., Hardy, S. and Gawthorpe, R., 2004. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks. Basin Research, 16(4): 489-506. Fuller, C.W., Willett, S.D. and Brandon, M.T., 2006. Formation of forearc basins and their influence on subduction zone earthquakes. Geology, 34(2): 65-68. Gutscher, M.A., Kukowski, N., Malavieille, J. and Lallemand, S., 1998. Material transfer in accretionary wedges from analysis of a systematic series of analog experiments. Journal of Structural Geology, 20(4): 407-416. Hancock, P.L., 1994. Continental deformation. Pergamon Press. Horsfield, W.T., 1977. An experimental approach to basement controlled faulting. Geologie Mijub., 56: 363-370. Hubbert, M.K., 1937. Theory of the scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48: 1459-1520. Hubbert, M.K., 1951. Mechanical basis for certain familiar geologic structures. Geological Society of America Bulletin, 62: 335-372. Hu, J.-C., Angelier, J., Homberg, C., Lee, J.-C., and Chu H.-T, 2001. Three-dimensional modeling of the behavior of the oblique convergent boundary of southeast Taiwan: friction and strain partitioning. Tectonophysics, 333, 261-276. Hu, J.-C., and Angelier, J., 2004. Stress permutations: 3-D distinct element analysis accounts for a common phenomenon in brittle tectonics. J. Geophys. Res., 109, B09403, doi:10.1029/2003JB002. Itasca, 2002. PFC2D/3D (Particle flow code in 2/3 dimensions), Minneapolis, Minnesota. Iwashita, K. and Oda, M., 2000. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol., 109(1-3): 192-205. Konstantinovskaia, E. and Malavieille, J., 2005. Erosion and exhumation in accretionary orogens: experimental and geological approaches. Geochemistry Geophysics Geosystems, 6: 1-25. Kuhn, M.R., 1999. Structured deformation in granular materials. Mechanics of Materials, 31(6): 407-429. Lohrmann, J., Kukowski, N., Adam, J. and Oncken, O., 2003. The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges. Journal of Structural Geology, 25(10): 1691-1711. McClay, K.R. and Price, N.J., 1981. Thrust and nappe tectonics, Geological Society of London Special Paper 9. Oxford, pp. 539. Mulugeta, G., 1988. Modeling the geometry of coulomb thrust wedges. Journal of Structural Geology, 10(8): 847-859. Ramberg, H., 1967. Gravity, deformation and the Earth's crust. Academic Press, London and New York. Ramberg, H., 1981a. Gravity, deformation and the Earth's crust, 2ed. Academic Press, London and New York. Ramberg, H., 1981b. Scale models and similarity, gravity, deformation and the Earth's crust in theory, experiments and geological application. 2nd edition, Academic Press. Roeder, D., Gilbert, O.E. and Witherspoon, W.D., 1978. Evolution and macroscopic structure of valley and ridge thrust belt, Tennessee and Virginia. Studies in Geology 2. Department of Geological Sciences, University of Tennessee, Chattanooga, 25 pp. Saltzer, S.D. and Pollard, D.D., 1992. Distinct element modeling of structures formed in sedimentary overburden by extensional reactivation of basement normal faults. Tectonics, 11(1): 165-174. Schäfer, B.C., Quigley, S.F. and Chan, A.H.C., 2002. Implementation of the discrete element method using reconfigurable computing (FPGAS), 15th ASCE Engineering Mechanics Conference. Columbia University, New York. Scott, D.R., 1996. Seismicity and stress rotation in a granular model of the brittle crust. Nature, 381(6583): 592-595. Sitharam, T.G., 2000. Numerical simulation of particulate materials using discrete element modelling. Current Science, 78(7): 876-886. Strayer, L.M. and Hudleston, P.J., 1997. Numerical modeling of fold initiation at thrust ramps. Journal of Structural Geology, 19(3-4): 551-566. Strayer, L.N. and Suppe, J., 2002. Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp: a distinct-element approach. Journal of Structural Geology, 24(4): 637-650. Suppe, J., 1980. A retrodeformable Cross section of northern Taiwan. Proceedings of the Geological Society of China: 46-55. Vietor, T., 2003. Numerical simulation of collisional orogeny using the distinct element technique. In: H. Konnietzky (Editor), Numerical modeling in Micromechanics via Particle Methods. Balkema, pp. 295-301. Vietor, T. and Oncken, O., 2005. Controls on the shape and kinematics of the Central Andean plateau flanks: Insights from numerical modeling. Earth and Planetary Science Letters, 236(3-4): 814-827. Willett, S., Beaumont, C. and Fullsack, P., 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology (Boulder), 21(4): 371-374. 陳正旺 (2005),車籠埔斷層周圍岩石力學特性之初探,國立台灣大學土木工程研究所碩士論文。 IODP-USIO website http://www-odp.tamu.edu/publications/190_IR/chap_01/thumb1.htm | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29291 | - |
dc.description.abstract | 因滑脫面摩擦係數(μb)在增積岩體的變形模式上扮演著重要的角色,所以,本研究利用二維離散元素法探討滑脫面摩擦係數(μb)的不同對於增積岩體發展過程所造成的影響並試圖找出高滑脫面摩擦係數與低滑脫面摩擦係數之間的臨界值(critical value)。在此研究中,所使用的分析方法為二維顆粒流軟體,其以離散元素法(distinct element method: DEM)為理論基礎,而圓形元素為基本單位的一套軟體。本研究的滑脫面摩擦係數範圍為0.05至0.9,而以顆粒之間的摩擦係數為0.5。經由不同滑脫面摩擦係數的模擬結果,可以清楚觀察到兩種增積岩體的變形模式,兩種型態的變形模式分別為低滑脫面摩擦係數,其滑脫面摩擦係數小於0.3~0.4,另一種為高滑脫面摩擦係數,其滑脫面摩擦係數則大於0.3~0.4,低滑脫面摩擦係數的變形模式,主要於楔形體或楔形體的腳邊增積形成前緣增積(frontal accretion)並伴隨著冒起(pop-up)構造的產生,當其滑脫面摩擦係數增加並轉為高滑脫面摩擦係數時,在變形過程中,俯衝(underthrusting)構造為其主要變形特徵並且穿透整個楔形體。不同摩擦係數所造成的差異性不僅能在演化過程中清楚辨別,也能在逆衝斷層傾角中觀測到其變化,逆衝斷層傾角由滑脫面摩擦係數0.05時的50度左右變化至滑脫面摩擦係數0.9時的10度左右。再者,生長率及抬升率的曲線明顯的顯示在滑脫面摩擦係數為0.3~0.4時,有一過渡帶存在。這提供我們以另一種方式去清楚得知高滑脫面摩擦係數與低滑脫面摩擦係數之間的臨界值(critical value)。另外,滑脫面摩擦係數為0.05時,楔形體地形面坡度(surface slope)為3°±1°,至滑脫面摩擦係數為0.9時,楔形體地形面坡度則為19°±1°,並且在滑脫面摩擦係數為0.35時,達到一個穩定的狀態。因此,依著生長率、抬升率及楔形體地形面坡度,我們可以清楚知道增積岩體的變形在滑脫面摩擦係數為0.3~0.4時,達到幾何形態上的平衡。 | zh_TW |
dc.description.abstract | This study explores the dominant role played by décollement basal friction μb on the deformation style or pattern of accretionary wedges. The Particle Flow Code in 2 Dimensions (PFC2D), a special implementation of distinct element method (DEM) using circular elements, is applied. In this study, basal friction of the décollement is designated to range from 0.05 to 0.9, and the interparticle friction is fixed as 0.5. Based on the modeling results with different basal frictions, two modes of deformation are clearly observed. For the low basal friction case (μb ≦ 0.3~0.4), the frontal accretion is prominent and is dominated by ‘pop-up’ structures at or near the toe of the wedge. For the high basal friction case (μb≧0.3~0.4), underthrusting is the principal feature during deformation throughout the wedge. We can observe not only the difference in the evolution but also the variation of thrust angle in the accretionary wedge during the experiments. Thrust angle varies from about 50° at μb=0.05 to about 10° at μb=0.9. Furthermore, we find a transition mode of deformation presents in μb=0.3~0.4 observed from growth rate of distance to deformation front, deformation zone, and uplift rate of maximum height. The range of this transition zone gives us another way to distinguish the critical value of the transit from low to high basal friction. Moreover, the surface slope changes from 3°±1° at μb=0.05 to 19°±1° at μb=0.9 and reaches stable at μb=0.35. Based on analyses on growth rate, uplift rate, and surface slope in the numerical models, geometric steady state of accretionary wedges is achieved when μb=0.3~0.4. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T01:04:00Z (GMT). No. of bitstreams: 1 ntu-96-R92241304-1.pdf: 17451858 bytes, checksum: 9d109b7b53544223c3dc680cfa26c54e (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV Contents VI List of Tables VIII List of Figures IX Chapter 1. Introduction 1 1.1 Motivation 2 1.2 Background 3 1.3 Advantages of Distinct Element Method (DEM) 8 Chapter 2. Distinct Element Method (PFC2D) 12 2.1 Distinct-Element Method (DEM) 13 2.1.1 Contact Law 14 2.1.2 Law of Motion 20 2.2 The Flow Chart for Particle Flow Code in Two Dimensions (PFC2D) 22 2.2.1 Timestep 23 2.2.2 Contact Constitutive Models 25 2.2.2.1 Contact-Stiffness Models 26 2.2.2.2 The Slip Model 27 2.2.3 Biaxial Test (choosing material properties for PFC Models) 27 Chapter 3. Model Setup Procedure 30 3.1 Biaxial Test (Mechanical properties) 32 3.2 Setup of the Numerical Model 37 Chapter 4. Results and Discussion 42 4.1 Modes of Deformation 43 4.1.1 Low basal friction (μb<0.3~0.4) 43 4.1.2 High basal friction (0.3~0.4≦μb) 55 4.2 The Variation of Thrust angle 61 4.3 The Variation of Distance to Deformation Front, Deformation Zone, Maximum Height, and Surface Slope with Shortenings 64 4.4 Sandbox Experiments 73 4.5 Comparison with Geological Observations 77 4.6 Discussion 79 Chapter 5. Conclusion 82 Reference 85 Appendix A 89 A.1 Scale effect 89 A.2 Similarity 91 Appendix B 94 | |
dc.language.iso | en | |
dc.title | 利用二維離散元素法探討增積岩體的變形模式 | zh_TW |
dc.title | Deformation of Accretionary Wedges Based on 2D Distinct Element Modeling | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張國楨 | |
dc.subject.keyword | 增積岩體,離散元素法,二維顆粒流軟體(Particle Flow Code in 2 Dimensions: PFC2D),滑脫面,滑脫面摩擦係數, | zh_TW |
dc.subject.keyword | Accretionary wedge,Distinct element method,Particle Flow Code in 2 Dimensions (PFC2D),Decollement,Basal friction, | en |
dc.relation.page | 133 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2007-07-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 17.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。