請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29286完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡忠怡(Chung-Yi Hu) | |
| dc.contributor.author | Yu-Jyun Chen | en |
| dc.contributor.author | 陳煜均 | zh_TW |
| dc.date.accessioned | 2021-06-13T01:03:55Z | - |
| dc.date.available | 2007-08-08 | |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | 1. Petri, M. The Autoimmune disease. Rose, N. R. & Mackay, I. R. (eds.), pp. 351-355 (Elsevier Academic Press,2006).
2. Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. Immunobiology : the immune system in health and disease. Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. (eds.), pp. 501-522 (Garland Pub, New York,2001). 3. Provan, D., Bussel, J. B. & Newland, A. C. Molecular haematology. Provan, D. & Gribben, J. (eds.), pp. 251-261 (Blackwell Pub.,2005). 4. Wanstrat, A. & Wakeland, E. The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2, 802-809 (2001). 5. Davidson, A. & Diamond, B. Autoimmune Diseases. New Engl J Med 345, 340-350 (2001). 6. Krishnan, S. & Tsokos, G. C. Immunogenomics and human disease. Falus, A. (ed.), pp. 249-266 (John Wiley,2006). 7. Tsokos, G. & Liossis, S.-N. Principles of Molecular Rheumatology. Tsokos, G. C. (ed.), pp. 311-323 (Humana Press, Totowa,2000). 8. Isenberg, D. & Rahman, A. Systemic lupus erythematosus - 2005 annus mirabilis? Nat Clin Prac Rheum 2, 145-152 (2006). 9. Manolios, N. & Schrieber, L. Clinical immunology. Bradley, J. & McCluskey, J. (eds.), pp. 329-345 (Oxford University Press,1997). 10. Porter, A. & Nelson, J. L. Immunogenetics of Autoimmune Disease. Oksenberg, J. R. & Brassat, D. (eds.), pp. 85-89 (Springer Science,2006). 11. Schned, E. S., Glickstein, S. L. & Doyle, M. A. T. Derivation of the Sledai. Arthritis and Rheum 36, 877 (1993). 12. Croker, J. A. & Kimberly, R. P. SLE: challenges and candidates in human disease. Trends in Immunol 26, 580-586 (2005). 13. Nath, S. K. et al. Linkage at 12q24 with systemic lupus erythematosus (SLE) is established and confirmed in Hispanic and European American families. Am J Human Genet 74, 73-82 (2004). 14. Ahmed, S. et al. Association of CTLA-4 but not CD28 gene polymorphisms with systemic lupus erythematosus in the Japanese population. Rheumatology 40, 662-667 (2001). 15. Wong, C. K., Lit, L. C. W., Tam, L. S., Li, E. K. & Lam, C. W. K. Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology 44, 989-994 (2005). 16. Prokunina, L. et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32, 666-669 (2002). 17. Karassa, F. B., Trikalinos, T. A. & Ioannidis, J. P. A. Role of the Fc gamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis - A meta-analysis. Arthritis and Rheum 46, 1563-1571 (2002). 18. Whitacre, C. C. Sex differences in autoimmune disease. Nat Immunol 2, 777-780 (2001). 19. Grabstein, K. H. et al. Cloning of a T-cell growth-factor that interacts with the beta-chain of the interleukin-2 receptor. Science 264, 965-968 (1994). 20. Budagian, V., Bulanova, E., Paus, R. & Bulfone-Paus, S. IL-15/IL-15 receptor biology: A guided tour through an expanding universe. Cytokine & Growth Factor Rev 17, 259-280 (2006). 21. Burton, J. D. et al. A lymphokine, provisionally designated interleukin T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer cells. Proc Natl Acad Sci USA 91, 4935-4939 (1994). 22. Fehniger, T. A. & Caligiuri, M. A. Interleukin 15: biology and relevance to human disease. Blood 97, 14-32 (2001). 23. Sugamura, K. et al. The interleukin-2 receptor gamma chain: Its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 14, 179-205 (1996). 24. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 6, 595-601 (2006). 25. Lodolce, J. P., Burkett, P. R., Koka, R. M., Boone, D. L. & Ma, A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine & Growth Factor Rev 13, 429-439 (2002). 26. Anderson, D. M. et al. Chromosomal assignment and genomic structure of Il15. Genomics 25, 701-706 (1995). 27. Krause, H. et al. Genomic structure and chromosomal localization of the human interleukin 15 gene. Cytokine 8, 667-674 (1996). 28. Pettit, D. K. et al. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem 272, 2312-2318 (1997). 29. Kurys, G., Tagaya, Y., Bamford, R., Hanover, J. A. & Waldmann, T. A. The long signal peptide isoform and its alternative processing direct the intracellular trafficking of interleukin-15. J Biol Chem 275, 30653-30659 (2000). 30. Tagaya, Y. et al. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci USA 94, 14444-14449 (1997). 31. Meazza, R. et al. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene 12, 2187-2192 (1996). 32. Prinz, M., Hanisch, U. K., Kettenmann, H. & Kirchhoff, F. Alternative splicing of mouse IL-15 is due to the use of an internal splice site in exon 5. Mol Brain Res 63, 155-162 (1998). 33. Onu, A., Pohl, T., Krause, H. & BulfonePaus, S. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol 158, 255-262 (1997). 34. Nishimura, H. et al. A novel autoregulatory mechanism for transcriptional activation of the IL-15 gene by a nonsecretable isoform of IL-15 generated by alternative splicing. FASEB J 19, 19-28 (2005). 35. Mariner, J. M., Lantz, V., Waldmann, T. A. & Azimi, N. Human T cell lymphotropic virus type I tax activates IL-15R alpha gene expression through an NF-kappa B site. J Immunol 166, 2602-2609 (2001). 36. Vazquez, N., Walsh, T. J., Friedman, D., Chanock, S. J. & Lyman, C. A. Interleukin-15 Augments Superoxide Production and Microbicidal Activity of Human Monocytes against Candida albicans. Infect Immunity 66, 145-150 (1998). 37. Waldmann, T. A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17, 19-49 (1999). 38. Bamford, R. N., Battiata, A. P., Burton, J. D., Sharma, H. & Waldmann, T. A. Interleukin (IL) 15/IL-T production by the adult T-cell leukemia cell line HuT-102 is associated with a human T-cell lymphotrophic virus type I R region/IL-15 fusion message that lacks many upstream AUGs that normally attenuate IL-15 mRNA translation. Proc Natl Acad Sci USA 93, 2897-2902 (1996). 39. Bamford, R. N., DeFilippis, A. P., Azimi, N., Kurys, G. & Waldmann, T. A. The 5 ' untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 160, 4418-4426 (1998). 40. Sato, N., Patel, H. J., Waldmann, T. A. & Tagaya, Y. The IL-15/IL-15R alpha on cell surfaces enables sustained IL-15 activity and contributes to the long survival of CD8 memory T cells. Proc Natl Acad Sci USA 104, 588-593 (2007). 41. Ma, A., Koka, R. & Burkett, P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 24, 657-679 (2006). 42. Lorenzen, I., Dingley, A. J., Jacques, Y. & Grotzinger, J. The structure of the interleukin-15 receptor alpha and its implications for ligand binding. J Biol Chem 281, 6642-6647 (2006). 43. Fehniger, T. A., Cooper, M. A. & Caligiuri, M. A. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine & Growth Factor Rev 13, 169-183 (2002). 44. Giri, J. G. et al. Identification and cloning of a novel IL-15 binding-protein that is structurally related to the alpha-chain of the IL-2 receptor. EMBO J 14, 3654-3663 (1995). 45. Anderson, D. M. et al. Functional characterization of the human interleukin-15 receptor alpha chain and closelinkage of IL15RA and IL2RA genes. J Biol Chem 270, 29862-29869 (1995). 46. Perkins, S. J., Haris, P. I., Sim, R. B. & Chapman, D. A study of the structure of human complement component factor H by Fourier transform infrared spectroscopy and secondary structure averaging methods. Biochem 27, 4004-4012 (1988). 47. Wei, X. q. et al. The sushi domain of soluble IL-15 receptor alpha is essential for binding IL-15 and inhibiting inflammatory and allogenic responses in vitro and in vivo. J Immunol 167, 277-282 (2001). 48. Bulanova, E. et al. Mast Cells Express Novel Functional IL-15 Receptor {alpha} Isoforms. J Immunol 170, 5045-5055 (2003). 49. Mortier, E., Bernard, J., Plet, A. & Jacques, Y. Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific, high affinity IL-15 antagonist. J Immunol 173, 1681-1688 (2004). 50. Dubois, S. et al. Natural splicing of exon 2 of human interleukin-15 receptor alpha -chain mRNA results in a shortened form with a distinct pattern of expression. J Biol Chem 274, 26978-26984 (1999). 51. Budagian, V. et al. Natural soluble Interleukin-15R alpha is generated by cleavage that involves the tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17). J Biol Chem 279, 40368-40375 (2004). 52. Bulanova, E. et al. Soluble interleukin (IL)-15R alpha is generated by alternative splicing or proteolytic cleavage and forms functional complexes with IL-15. J Biol Chem 282, 13167-13179 (2007). 53. Mortier, E. et al. Soluble Interleukin-15 Receptor alpha -sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma: Hyperagonist IL-15/IL-15R alpha fusion proteins. J Biol Chem 281, 1612-1619 (2006). 54. Rubinstein, M. P. et al. Converting IL-15 to a superagonist by binding to soluble IL-15R alpha. Proc Natl Acad Sci USA 103, 9166-9171 (2006). 55. Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: Implications for immunotherapy. Immunity 14, 105-110 (2001). 56. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 97, 11445-11450 (2000). 57. Carson, W. E. et al. Potential role for interleukin-15 in the regulation of human natural killer cell survival. J Clin Invest 99, 937-943 (1997). 58. Zhang, X. H., Sun, S. Q., Hwang, I. K., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8(+) T cells in vivo by IL-15. Immunity 8, 591-599 (1998). 59. Fontenot, J. D., Rassmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin-2 in FOXP3-expressing regulatory T cells. Nat Immunol. 6, 1142-1151 (2005). 60. Maloy, K. J. & Powrie, F. Fueling regulation: IL-2 keeps CD4+ Treg cells fit. Nat Immunol. 6, 1071-1072 (2005). 61. Lenardo, M. J. Fas and the art of lymphocyte maintenance. J. Exp. Med. 183, 721-724 (1996). 62. D'Cruz, L. M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 6, 1152-1159 (2005). 63. Ku, C. C., Murakami, M., Sakamato, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8(+) memory T cells by opposing cytokines. Science 288, 675-678 (2000). 64. Becker, T. C. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541-1548 (2002). 65. Schluns, K. S., Klonowski, K. D. & Lefrancois, L. Transregulation of memory CD8 T-cell proliferation by IL-15R alpha+ bone marrow-derived cells. Blood 103, 988-994 (2004). 66. McInnes, I. B., Leung, B. P., Sturrock, R. D., Field, M. & Liew, F. Y. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-[alpha] production in rheumatoid arthritis. Nat Med 3, 189-195 (1997). 67. Aringer, M. et al. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology 40, 876-881 (2001). 68. Baranda, L. et al. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatology 44, 1507-1513 (2005). 69. Crispin, J. C. & cocer-Varela, J. Interleukin-2 and systemic lupus erythematosus - fifteen years later. Lupus 7, 214-222 (1998). 70. Emlen, W., Niebur, J. & Kadera, R. Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 152, 3685-3692 (1994). 71. Aringer, M. et al. High levels of Bcl-2 protein in circulating T-lymphocytes, but not B-lymphocytes, of patients with systemic lupus-erythematosus. Arthritis and Rheum 37, 1423-1430 (1994). 72. Schluns, K. S., Stoklasek, T. & Lefrancois, L. The roles of interleukin-15 receptor alpha: Trans-presentation, receptor component, or both? Intl. J. Biochem. & Cell Biol. 37, 1567-1571 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29286 | - |
| dc.description.abstract | 介白素-15 (IL-15)為一種吸附於細胞膜之細胞激素,主要藉助與IL-15受器體α次元結合而表現於樹突狀細胞(dendritic cells)和單核球(monocytes)細胞表面,功能為促進NK細胞、T細胞和B細胞的增生和分化,並促使細胞產生抗細胞凋亡蛋白Bcl-2。IL-15受器體(IL-15 receptor,IL-15R)為由α、β、γ三個次元所組成的異構三聚體(heterotrimer),其中IL-15受器體α次元(IL-15Rα)對於IL-15結合具有高親和力。
全身性紅斑性狼瘡(Systemic Lupus Erythematosus,SLE)是一種由對抗自體抗原的抗體或是淋巴球 (autoantibodies or autoreactive lymphocytes)所引起全身性慢性發炎的自體免疫性疾病。除了產生多種自體抗體以外,全身性紅斑性狼瘡(SLE)病人在細胞層次上也有多種異常,可能都與SLE病人體內IL-15增加有關。先前的研究指出,大約有40%的SLE病人血清中IL-15的量高於於正常健康人;且血清中IL-15量的增加與其淋巴球Bcl-2表現量增加呈正相關。但於L. Baranda et al. 研究發現,儘管全身性紅斑狼瘡的病人血清中IL-15有增加的現象,來自於全身性紅斑性狼瘡病人的血液中的周邊血液單核球細胞 (PBMCs) 與T淋巴球細胞在受PMA或PHA刺激後,對於IL15的反應卻較健康對照組細胞差,且IL-15受器體的表現並沒有減少的情形,推測SLE病患IL-15受器體功能可能與正常對照組有差異。IL-15受器體α次元為IL-15R複合體中,對IL-15專一性且高親和力的次元,且根據基因剔除的老鼠表現型顯示,IL-15Rα在IL-15的正常生理功能上扮演重要的角色。故若IL-15受器體α次元發生變異,極可能導致細胞對於IL-15反應異常,參與了全身性紅斑性狼瘡的致病機制。故本篇研究以IL-15受器體α次元基因(IL15RA)為研究目標,研究IL15RA在基因單點核苷酸的變異與SLE發生之關聯性。 本篇論文主要在探索IL15RA基因之變異與全身性紅斑性狼瘡之相關性,並對全身性紅班性狼瘡的病人與健康對照組進行SNP定型(Typing),討論IL15RA 基因上單點核苷酸多型性與疾病發生、疾病活性與臨床症狀的關係。在本研究中篩選的13個位於預測之轉錄調節子(regulatory element)與轉錄子(exon)的SNP後,選定了3個在台灣族群中具多型性的SNP (-646G/C、-565C/T、+627A/C),進行大量檢體的定型。進行統計分析後,發現IL15RA +627A對偶基因型與SLE的發生有顯著的正相關(odds ratio =1.42, 95% confidence interval: 1.01-2.01, p: 0.044);IL15RA半套体 (-646C/-565C/+627C)則與SLE呈高度負相關。(odds ratio=0.59, 95% CI: 0.40-0.87,p-value: 0.007)。 | zh_TW |
| dc.description.abstract | Interleukin-15, a membrane-bound cytokine, is mainly expressed on the surfaces of dendritic cells and monocytes through binding to the high affinity IL-15 receptor α subunit. IL-15 can stimulate the generation and differentiation of NK cells, T cells and B cells, and induce the production of anti-apoptotic protein, Bcl-2. IL-15 receptor (IL15R) is composed of α, β and γ subunits and IL-15 receptor α subunit (IL-15Rα) is a unique subunit for IL-15 with an extremely high affinity (Ka~1011M-1).
Systemic lupus Erythematosus is a systemic autoimmune disease characterized by chronic systemic inflammation disease, which is mediated by autoreactive lymphocytes or autoantibodies. In addition to the production of various antibodies, patients with SLE suffer from many cellular abnormalities, and all the abnormalities could be attributed to the increasing of IL-15 in the sera of patients with SLE. In comparison with healthy control population, IL-15 was found to be elevated in 40% of SLE patients, and the amount of serum IL-15 is correlated with the amount of Bcl-2 in lymphocytes from patients. In spite of elevated serum IL-15 in SLE patients, PBMCs and lymphocytes from SLE patients showed poor responses to recombinant IL-15 and PHA than cells from healthy controls, without diminished expression of IL-15Rα, which suggested an altered function or expression of IL-15 receptor in SLE leukocytes. According to the same phenotypes between IL-15-/- mice and IL-15Rα-/- mice, IL-15Rα is viewed as a critical part in the normal physiological function of IL-15. Variances occur on IL-15Rα or IL15RA gene may result in poor cellular responses to IL-15. Therefore, IL15RA was chosen as candidate gene. Single nucleotide polymorphisms (SNPs) on IL15RA gene were analyzed and investigated if genetic variation of IL15RA gene would correlate to SLE development. Thirteen SNPs in the predicted regulatory elements and exonic regions, and three SNPs (-646G/C, -565C/T, +627A/C) were intensive studied in the SLE patients and the non-lupus control. The results indicated that IL15RA +627A allele was positively associated withSLE (odds ratio=1.42, 95% confidenence interval: 1.01-2.01, p: 0.044), and the haplotype (-646C/-565C/+627C) was significantly negatively correlated to SLE prevalence (odds ratio=0.59, 95% CI: 0.40-0.87, p: 0.007). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T01:03:55Z (GMT). No. of bitstreams: 1 ntu-96-R94424014-1.pdf: 1849433 bytes, checksum: 37f765bac37079cfb4e381e072749226 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄......................................................I
中文摘要..................................................V 英文摘要................................................VII 第一章、 緒論 第一節、 全身性紅斑性狼瘡簡介.............................1 壹、 自體免疫疾病.....................................1 貳、 全身性紅斑性狼瘡.................................2 A. 全身性紅斑性狼瘡臨床症狀與診斷...................2 B. 全身性紅斑性狼瘡的流行病學.......................3 C. 自體抗體與全身性紅斑性狼瘡.......................5 第二節、 介白素-15與介白素-15受器體.......................6 壹、 介白素-15........................................6 A. 介白素-15........................................6 B. 介白素-15基因與蛋白質結構........................6 C. 介白素-15基因的表現..............................7 D. 介白素-15的轉錄與轉譯調控........................8 貳、 介白素-15受器體..................................8 參、 介白素-15受器體α次元.............................9 A. 介白素-15受器體α次元基因與蛋白質結構.............9 B. 介白素-15受器體α次元基因的表現..................10 C. 可溶性介白素-15受器體α次元......................11 肆、 介白素-15與介白素-2.............................12 伍、 介白素-15與SLE..................................12 第三節、 研究目的與實驗設計..............................14 第二章、 材料與方法 第一節、 材料............................................16 壹、 檢體收集........................................16 貳、 試劑清單........................................17 參、 試劑組..........................................18 肆、 聚合酶鏈鎖反應引子..............................18 A. IL15RA基因轉錄調節子區域(predicted regulatory element)聚合酶鏈鎖反應引子......................18 B. IL15RA基因第三轉錄子區域(13786~13496)聚合酶鏈鎖反 應引子..........................................19 C. IL15RA基因第四轉錄子區域(16552~16850)聚合酶鏈鎖反 應引子..........................................19 伍、 實驗儀器........................................19 陸、 軟體與網路工具..................................20 第二節、 試劑配方........................................21 第三節、 方法............................................23 壹、 Genomic DNA純化.................................23 貳、 介白素-15受器體α次元基因啟動子預測掃描..........24 參、 聚合酶鏈鎖反應..................................24 肆、 洋菜膠電泳分析..................................28 伍、 PCR產物純化.....................................29 陸、 PCR產物純化後核酸定序前處理.....................30 柒、 限制酶片段長度多型性分析........................30 第三章、 實驗結果 第一節、 全身性紅斑性狼瘡病人疾病活性之評估與臨床資料收集31 第二節、 介白素-15受器體α次元(IL15RA)基因單點核苷酸多型性 (SNP)之疾病相關候選SNPs篩選.....................32 壹、 IL15RA 基因轉錄調節子區域(regulatory element)預測 與疾病相關候選SNPs篩選..........................32 貳、 IL-15RA gene轉錄子(Exons)區域疾病相關候選SNPs篩選 ................................................33 第三節、 介白素-15受器體α次元疾病相關候選SNPs與SLE疾病關聯 分析 壹、 對偶基因型頻率(Allelic Frequency)分析...........35 A. 對偶基因型頻率與全身性紅斑性狼瘡發生之分析......35 B. -646G/C、-565C/T、+627A/C對偶基因型頻率與全身性紅 斑性狼瘡疾病活性與臨床症狀之分析................35 貳、 -646G/C、-565C/T、+627A/C基因型與全身性紅斑性狼瘡 發生、疾病活性與臨床症狀關聯分析................36 參、 -646G/C、-565C/T、+627A/C對偶基因型攜帶(Allelic Carriage)與全身性紅斑性狼瘡發生、疾病活性與臨床症 狀關聯分析......................................36 肆、 -646G/C、-565C/T、+627A/C半套體(Haplotypes)與全身 性紅斑性狼瘡發生、疾病活性與臨床症狀關聯分析...37 A. -646、-565、+627半套體基因型預測................37 B. -646G/C、-565C/T、+627A/C半套體基因型與疾病的發 生、疾病活性與臨床症狀分析......................37 第四章、 討論............................................39 第五章、 參考文獻........................................42 圖表.....................................................49 圖一、全身性紅斑性狼瘡病人年齡與疾病活性之分布.........50 圖二、IL15RA gene 5’端上游基因Promoter scan結果.......51 圖三、限制酶片段長度多型性實驗分析第四轉錄子單點核苷酸變 異627A/C.........................................52 表一、小規模先趨測試國人樣本已發表之各SNP點基因變異之分布 .................................................53 表二、IL15RA SNP位點基因型分析結果.....................54 表三、IL15RA SNP位點Allelic frequency與臨床症狀分析結果55 表四、IL15RA -646、-565、+627位點基因型與SLE發生與疾病活 性關聯分析.......................................57 表五、IL15RA -646、-565、+627位點基因型與臨床症狀分析結果 .................................................58 表六、IL15RA -646G/C、-565C/T、+627A/C位點對偶基因攜帶與 SLE發生及疾病活性關聯分析........................60 表七、IL15RA -646G/C、-565C/T、+627A/C位點對偶基因攜帶與 臨床症狀分析結果.................................61 表八、Program EH version 1.20預測-646G/C、-565C/T、 +627A/C之半套體(Haplotypes)......................63 表九、IL15RA半套體基因型(Haplotypes)與SLE發生及疾病活性關 聯之分析.........................................64 表十、IL15RA -646G/C、-565C/T、+627A/C半套體基因型與臨床 症狀分析結果.....................................65 附錄.....................................................67 附錄一、The American College of Rheumatology criteria for classification of SLE......................68 附錄二、The Systemic Lupus Erythematosus disease activity index (SLEDAI)........................69 附錄三、IL-15的基因與一級蛋白質結構....................70 附錄四、IL-15 receptor.................................71 附錄五、IL-15Rα基因與蛋白質結構........................72 附錄六、IL-15與IL-2在基因結構、蛋白質結構與訊息傳遞之比較 ...............................................73 附錄七、Nucleotide abbreviation to represent ambiguity.74 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酸多型性 | zh_TW |
| dc.subject | 全身性紅斑性狼瘡 | zh_TW |
| dc.subject | 介白素-15 | zh_TW |
| dc.subject | 介白素-15受器體α次元 | zh_TW |
| dc.subject | 單點核苷 | zh_TW |
| dc.subject | interleukin-15 receptor alpha (IL-15Rα) | en |
| dc.subject | Single nucleotide polymorphism (SNP) | en |
| dc.subject | Systemic lupus erythematosus (SLE) | en |
| dc.subject | interleukin-15 | en |
| dc.title | 介白素-15受器體-α次元基因變異於全身性紅斑狼瘡之研究 | zh_TW |
| dc.title | Investigating Association of IL15RA Genetic Variation in Systemic Lupus Erythematosus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許秉寧,孫光蕙,楊雅倩 | |
| dc.subject.keyword | 全身性紅斑性狼瘡,介白素-15,介白素-15受器體α次元,單點核苷,酸多型性, | zh_TW |
| dc.subject.keyword | Systemic lupus erythematosus (SLE),interleukin-15,interleukin-15 receptor alpha (IL-15Rα),Single nucleotide polymorphism (SNP), | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2007-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
