Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29255
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張龍生(Loong-Sheng, Chang)
dc.contributor.author"Chien-Min, Wu"en
dc.contributor.author吳建銘zh_TW
dc.date.accessioned2021-06-13T01:03:27Z-
dc.date.available2008-07-30
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-23
dc.identifier.citation王惠亮、王金池、邱人彰、孫明賢. 1978. 台灣木瓜輪點病研究初報. 植保會刊. 20:133-140.
王惠亮. 1981. 台灣木瓜輪點病之蚜蟲媒介研究. 植物保護會刊. 23:229-233.
王德男. 1982. 木瓜耐輪點毒素病品種之檢定. 中華農業研究. 31:162-168.
王德男. 1991. 台灣木瓜栽培之回顧與展望. 杜金池、程永雄、顏昌瑞主編. 台灣果樹之生產及研究發展研討會專刊. pp. 357-371. 台灣省農業試驗所特刊第35號.
王德男、翁瑞亨. 1996. 木瓜網室栽培成敗關鍵. 興農雜誌紀念刊. 85(02):12-35.
王啟正. 1996. 番木瓜抗木瓜輪點病毒遺傳差異性之研究. 國立台灣大學園藝學研究所碩士論文. pp37-71.
王仁晃. 2001. 木瓜輪點病毒對番木瓜抗感病品種(系)光合成的影響. 國立台灣大學園藝學研究所碩士論文. pp7-38.
包慧俊. 2000. 木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究. 國立中興大學植物病理研究所博士論文. pp. 111-123
吉井三惠子. 1986. 影響木瓜輪點病毒病徵表現與變異之因素. 台灣大學植物病蟲害研究所碩士論文. pp. 64-66.
林正忠. 1980. 木瓜輪點毒素病之系統及交叉保護. 國立台灣大學植物病蟲害學研究所博士論文. pp.115.
李宜霞. 2006. 木瓜輪點病毒之Real-Time RT-PCR定量偵測技術之研發與應用. 國立台灣大學植物病理與微生物學研究所碩士論文. pp22-35.
徐秀鳳. 1989. 欲防毒素病最有效的木瓜網室栽培. 興農雜誌. 242:14-22.
翁芬華. 1981. 木瓜輪點病毒之變異性. 國立台灣大學植物病蟲害研究所碩士論文. pp50-57.
郭耀庭. 2001. 親子回歸法估算木瓜抗木瓜輪點病毒之遺傳力. 國立台灣大學園藝學研究所碩士論文. pp16-26..
張春蕉. 1995. 番木瓜輪點病的增值與擴散. 國立台灣大學園藝學所碩士論文. pp64..
黃國林. 2004. 葉綠素螢光檢測番木瓜罹患木瓜輪點病毒病後之耐受性. 國立台灣大學園藝學研究所碩士論文. pp25-30.
陳脈紀、劉顯達、王惠亮、位國慶、邱人彰. 1976. 木瓜輪點病之電子顯微
鏡觀察. 植物保護學會會刊論文摘要. 18:399.
農業統計年報. 2005. 行政院農業委員會網站.
(http://wwwe.coa.gov.tw/htmlarea_file/web_articles/7238/098.pdf)
廖奕晴. 2004. 台灣木瓜輪點病毒系統之變異與鑑別即快速檢測. 國立台灣大學植物病蟲害研究所碩士論文. pp31-47
蔡文惠. 1995. 木瓜接種不同輪點病毒系統後的反應. 國立台灣大學園藝學研究所碩士論文. pp25-56.
關政平. 1990. 木瓜輪點病毒之單元抗體的特異性. 國立台灣大學植物病蟲害研究所碩士論文. pp105-111.
龔怡蓉. 2004. 木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備. 國立中興大學植物病理學研究所碩士論文. pp. 16-34
Adsuar, J. 1946. Studied on virus disease of papaya(Carica papaya)in Puerto Rico III-Property studies of papaya mosaic virus. Univ. Puerto Rico Agr. Expt. Sta. Tech. 4:7-11.
Adsuar, J. 1972. A new virus disease of papaya(Carica papaya)in Purerto Rico. J. Agric. Univ. P. R. 56:397-402.
Bateson, M. F., Lines, R. E., Revill, P., Chaleeprom, W., Ha, C. V., Gibbs, A. J., and Dale, J. L. 2002. On the evolution and molecular epidemiology of the potyvirus papaya ringspot virus. J. Gen. Virol. 83:2575-2585.
Bau, H. J., Cheng, Y. H., Yu, T. A., Yang, J. S., and Yeh, S. D. 2003. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112-120.
Berry, J. A. and J. S. Downton. 1982. Enviromental regulation of photosynthesis. P263-343. In:Govindjee(eds.). Photosynthesis, development, carbon metabolism and plant production. Vol II. Academic press. New York.
Bodaghi, S., Mathews, D. M. and Dodds, J. A. 2004. Natural incidence of mixed infections and experimental cross protection between two genotypes of tobacco mild green mosaic virus. Phytopathology 94:1337-1341.
Brunt, A., Crabtree, K, and Gibbs, A. 1990. Virus of Tropical Plants:Papaya ringspot potyvirus. CAVI Wallingford U.K. p374-377.
Campbell. C. L., and L. V. Madden. 1990. Introduction to plant disease epidemiology. pp. 532. John Wiley and Sons, New. York.
Capoor, S. P. and Varma, P. M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Curr. Sci. 17:265-266.
Capoor, S. P. and Varma, P. M. 1956. A mosaic disease of papaya in Bombay. Indian J. Agr. Sci. 28:225-233.
Chang, L. S. and T. Y. Chung. 1992. Papaya rinspot virus tolerance among diverse papaya genotypes. HortScience 27:658.
Citovsky, V. 1993. Probing plasmodesmatal transport with platn virus. Plant Physiol. 102:1071-1076.
Conover, R. A. 1962. Virus disease of the papaya in Florida. Phytopathology 52:6.(abstract)
Conover, R. A. 1976. A program for development of papaya tolerant to the distortion ringspot virus. Proc. Fla. State HortScience 89:29-231.
Conover, R. A. and R. E. Litz. 1978. Progress in breeding papayas with tolerance to papaya ringspot virus. Porc. Fla. State Hort. Soc. 91:181-184.
Conover, R. A. and Litz, R. E. 1983. Breeding for resistance to papaya ringspot virus. Phytopathology 73:131.
Cook, A. A. and Milbrath, G. 1971. Virus disease of papaya on Oahu(hawaii)and identification of additional diagnostic host plants. Plant Dis. Rep. 55:785-787.
Cook, A. A. 1972. Virus disease of papaya. Fla. Agr. Expt. State Inst. Food and Agr. Sci. p1-9.
Costa, A. S., and Muller, G. W. 1980. Tristeza control by cross protection:A U.S.-Brazil cooperative success. Plant Dis. 64:538-541.
Culver, J. A. 1996. Tobamovirus cross protection using a potexvirus vector. Virology 226:225-235.
De la Rosa, M. and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106:329-336.
Deom, C. M., M. Lapidot and R. N. Beachy. 1992. Plant virus movement proteins. Cell. 69:221-224.
Dodds, J. A. 1982. Cross-protection and interference between electrophoretically distinct strains of cucumber mosaic virus in tomato. Virology 118:235-240.
Flor, H. H. 1971. Current status of the gene-for-gene concept. Ann Rev of phytopathol. 9:275-296.
Fraser, R. S. S. 1988. Virus recognition and pathogenicity:implication for resistance mechanisms and breeding. Pestic. Sci. 23:267-275.
Fraser, R. S. S. 1990. The genetics of resistance to plant virus. Ann. Rev. Phytopathol. 28:179-200.
Fraser, R. S. S. 1992. The Genetics of Plant-Virus Interaction:Implicaiton for plant breeding. Euphytica. 63:175-185.
Fulton, R. W., 1986. Practices and precautions in the use of cross protection for plant virus disease control. Annual Review of phytopathology. 24:67-81.
Gosalves, D. and Ishii, M. 1980. Purification and serology of papaya ringspot virus. Phytopathology 70:1028-1032.
Hull, R. 1989. The movement of virus in plants. Ann. Rev. Phytopathol. 27;213-240.
Hung, T. H., Wu, M. L., and Su, H. J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147:599-604.
Ishii, M. and Holtzamann, O. V. 1963. Papaya mosaic disease in Hawaii. Plant Dis. Rep. 47:947-951.
Jensen, D. D. 1949a. Papaya virus diseases with special reference to papaya ringspot. Phytopathology 39:191-211.
Jensen, D. D. 1949b. Papaya ringspot virus and it’s insect vector relationships. Phytopathology 39:212-220.
Kawano, S., and Yonaha, T. 1992. The occurrence of papaya leaf-distortion mosaic virus in Okinawa. Tech. Bull. Of FFTC 132:Food and Fertilizer.
Khun, C. W., C. P. Benner and H. A. Hobbs. 1986. Resistance responses in cowpea to southern bean mosaic virus based on virus accumulation and symptomatology. Phytopathology 76:795-799.
Khurana, S. M. and Bhargava, K. S. 1970. Induce apocarpy and “double papaya”fruit formation in papaya with distortion ringspot virus infection. Plant Dis. Rep. 54:181-183.
Kiritani, K., and Su, H. J. 1999. Papaya ringspot, banana bunchy top, and citrus greening in Asia and Pacific region:occurrence and control strategy. Japn. Agri. Res. Quar. 33:23-30.
Lin, C. C., Su, H. J., and Wang, D. N. 1989. The control of papaya ringspot virus in Taiwan R.O.C. ASPAC Food and Fertilizer ech. 114:1-13.
Linder, R. C., Jensen, D. D. and Ikeda, W. 1945. Ringspot:new papaya punderer. Hawaii Farm and Home 8:10-14.
Lombard, P. B., N. W. Callan, N. E. Looney, G. C. Martin, A. R. Renquist and E. A. Mielde. 1988. Towards a standardized nomenclature procedures, values, and units in determining fruit and nut tree yield performance. HortScience 23(5):813-817.
Maoka, T. Kawano, S., and Usugi, T. 1995. Occurrence of the P strain of papaya ringspot virus in Japan. Ann. Phytopath. Soc. Japan. 61:91-94.
Maoka, T., Kashiwazaki, S., Tsuda, S., Usugi. T., and Hibino, H. 1996. Nucleotide sequence of the capsid protein gene of papaya leaf-distortion mosaic potyvirus. Arch. Virol. 141:197-204.
Maoka and Tatsuji. 2005. The complete nucleotide sequence and biotype variablility of papaya leaf distortion mosaic virus. Phytopathology 95:128-135.
Marler, T. E., M. V. Mickelbart, and R. Quitugua. 1993. Papaya ringspot virus influence net gas exchange of papaya leaves. HortScience 28(4):322-324.
Mckinney, H. H. 1929. Mosaic diseases in the Canary island, West Africa, and Gibraltar. J. Agric. Res. 39:557-558.
Mercedes, De La R. and Lastra. R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106:329-336.
Nakasone, H. Y. and R. E. Paull. 1998. Papaya. In:H. Y. Nakasone and R. E. Paull. Edit. Tropical Fruits. CAB International Press, Wallingford. UK. pp239-269.
Powell, C. A., Pelosi, R. R., Rundell, P. A., Stover, E., and Cohen, M. 1999. Cross-protection of grapefruit from decline-inducing isolates of citrus tirsteza virus. Plant Dis. 83:989-991.
Provvidenti, R., and Gonsalves. D. 1982. Resistance to papaya ringspot virus in Cucumis metuliferus and it’s relationship to resistance to watermelon mosaic virus 1. J. Hered. 73:239-240.
Purcifull, D. E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses. No. 292(No. 84 revised).
Quemada, H., L’Hostis, B., Gonsalves, D., Reardon, I, M,m Heinrikson, R., hiebert, E. L., Sieu, L, C. and Slightom, J. L. 1990. The nucleotide sequences of the 3’-terminal regions of papaya ringspot virus strains W and P. J. Gen. Virol. 71:203-210.
Quiot-Douine, L., Purcifull, D. E., Hiebert, E., and de Mejia, M. V. G. 1986. Serological relationships and in vitro translation of an antigenically distinct strain of papaya ringspot virus. Phytopathology 76:346-351.
Rast, A. T. B. 1972. MII-16, an artificial symptomless mutant of tobacco mosaic virus for seedling inoculation of tomato crops. Neth. J. Plant Pathol. 78:110-112.
Riding, W. H., Zettler, F. W., and Conover, R. A. 1978. Distortion ringspot of papaya. Plant Path. Cir. No. 184. Fla. Dept. Agr. And Consume Serv. Div. of Plant Industry.
Roggero P. and Masenga V. 2002. Field isolates of tomato spotted wilt virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis. 86:950-954
Sanchez, C. and Salazar, C. de L. R. 1975. Identification of possible sources of resistance to papaya ringspot virus in Carica papaya L.Proc. Amer. Phytopath. Soc. 2:79
Sarkar, S., and Smitamana, P. 1981. A Proteinless Mutant of Tobacco Mosaic Virus:Evidence against the role of a viral coat protein for interference. Mol. Gen. Genet. 184:158-159.
Schaefers, G. A. 1969. Aphid vectors of the papaya mosaic virus Puerto Rico J. Agr. Univ. Pur Puerto Rico. 53:1-13.
Shaner, G. and R. E. Finney. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Know wheat. Phytopathology 67:1051-1056.
Singh, A. B. 1969. A new virus disease of Carica papya in India. Plant Dis. Rep. 53:267-269.
Sigh, A. B. 1971. Transmission of papaya leaf reduction virus by Myzus persicae. Plant Dis. Rep. 55:526-529.
Smith, F. E. V. 1928. Plant disease in Jamaica in 1928. Ann. Rep. Agr. Jamaica for the year ended 31st Dec. p. 1-20.
Story, G. E. and Haliiwell, R. S. 199. Identifification of distortion ringspot virus disease of papya in the Domincan Republic. Plant Dis. Rep. 53:757-760.
Sodkiewicz, W. and A. Strzembicka. 2004. Application of Triticum monococcum for the improvement of triticale resistance to leaf rust(Puccinia triticina). Regulation Breeding. 123:39-42.
Tennant, P. F., Gonsalves, C., Ling, K. S., Fitch, M., Manshardt, R., Slightom, J. L., and Gonsalves. D. 1994. Differential protection against papaya and classically cross-protected papaya . Phytopathology 84:1359-1366.
Valkonen, J. P. T., Rajamaki, M. L., and Kekarainen, T. 2002. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant-Microbe Interact. 15:683-692.
Van der Plank, J. E. 1963. Plant Disease:Epidemics and control. Academic Press, New York.
Wang, C. H. and Yeh, S. D. 1997. Divergence and conservation of the genomic RNAs of Taiwan and Hawaii strains of papaya ringspot potyvirus. Arch. Virol. 142:271-285.
Wang, H. L., Yen, S. D., Chiu, R. J., and Gonsalves, D. 1987. Effectiveness of cross-protection by mild mutants of papaya rinspot virus for control of ringspot disease of papaya in Taiwan. Plant dis. 71:491-497.
Walkey, D. G. A. and H. Lecturer. 1991. Applied plant virology. 2nd. 338. pp. Chapman and Hall. New York.
Yonaha, T., Yonemori, S., and Tamori, M. 1976. Relation between the flight occurrence of alate aphids and the spread of papaya virus disease in the field. Okinawa Agriculture. 14:7-15.
Yeh, S. D. and Gonsalves, D. 1984a. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74:1086-1091.
Yeh, S. D., Gonsallves, D., and Provvidenti, R. 1984b. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus. Phytopathology 74:1081-1085.
Yeh, S. D. and Gonsalves, D. 1985. Translation of PRSV RNA in vitro:detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143:260-271.
Yeh, S. D., Gonsallves, D., Wang, H. L., Namba, R., and Chiu, R. J. 1988. Control of papaya ringspot virus by cross protection. Plant Dis. 72:375-380.
Yeh, S. D., Jan, F. J., Chiang. C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide seqyence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73:2531-2541.
Yeh, S. D. 1994. Comparison of the genetic organization of papay ringspot virus with other potyvirus. Plant Pathol. 3:54-64.
You, B. J., Chiang, C. H., Chen, L. F., Su, W. C., and Yeh, S. D. 2005. Engineered mild strains of papaya ringspot virus for broader cross protection in cucubits. Phytopathology 95:533-540
Zettler, F. W., Edwardson, J. R., and Purcifull, D. E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58:332-335.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29255-
dc.description.abstract於網室內進行病毒在葉片分佈試驗,接種2個星期將接種葉上方所有葉片以專一性引子對作RT-PCR偵測,顯示PRSV主要分佈在頂端幼葉,PLDMV在接種兩個星期後則測不出訊號,而葉序偵測結果顯示每週採樣方式以當週第7片葉片為最適合。在網室內以非同步的方式接種木瓜輪點病毒(PRSV)嚴重嵌紋壞疽系統(SMN)、嚴重畸形系統(DF)與木瓜畸葉嵌紋病毒(PLDMV),並分析不同接種方式對病徵與生長量的影響,調查葉片病徵曲線面積顯示接種PLDMV的病徵比PRSV要來的輕微,混接PLDMV處理的病徵比只有PRSV系統的病徵要輕微,先接種PLDMV後再接PRSV對降低病徵嚴重性最明顯,類似交叉保護的效果;接種時間間隔以接種PLDMV 4個星期後再接PRSV的保護效果最佳,於第2與第4星期重複接種PRSV會降低PLDMV的保護效果;改變DF系統與PLDMV的接種順序在病徵上的嚴重差異大於SMN系統,顯示DF與PLDMV在病徵病理性較相似。相對於PLDMV,PRSV在莖上會產生明顯的水浸斑,而各處理水浸斑在莖上的分佈曲線面積結果與葉部病徵類似;PLDMV在株高與莖粗相對生長率上仍具干擾PRSV的效果,但差異不明顯,節數絕對生長率則無差異。各處理的螢光變量比值(Fv/Fm)除對照組外,其於處理差異不大;以專一性引子對偵測顯示,PRSV兩系統的增殖速率大於PLDMV,SMN與DF系統在初期會相互干擾對方複製,後期則與PLDMV都可共存於寄主內。網室內同步接種處理則顯示PLDMV的干擾效果降低,各處理的差異不大,主要受PRSV的影響,顯示PRSV在同步接種的競爭優勢大於PLDMV,但三種病毒於後期仍可共存於寄主內。露天同步接種試驗各處理包含對照組的差異皆不明顯,於第8個星期做病毒檢測,發現各處理皆感染PRSV的DF系統,顯示DF系統為田間主要流行系統。‘台大選系10號’在本次試驗的耐病表現較商業種‘台農二號’優良,顯示未來在田間露天栽培環境下可避免PRSV與PLDMV對其造成的危害。
木瓜輪點病毒(PRSV)在台灣分化成數個系統,其中又以嚴重嵌紋壞疽系統(SMN)對番木瓜的破壞力最大,本試驗探討由台大園藝系所育成的耐病品系對木瓜輪點病毒SMN系統與未來可能流行的木瓜畸葉嵌紋病毒(PLDMV)的耐受度,並以商業品種 ‘台農2號’ 、 ‘日陞’ 與 ‘紅妃’ 品種做對照組。接種SMN 4星期後的葉片病徵以 ‘NTU04’ 與 ‘NTUB’ 的表現最佳,‘日陞’種則產生嚴重嵌紋病徵,重複接種SMN 12個星期後則以 ‘NTU04’ 與 ‘NTU11’ 表現最為優良,‘日陞’種則全部死亡。接種PLDMV 4星期後以‘台農2號’與‘日陞’種的葉片上會產生嵌紋病徵,其餘品種(系)的病徵則不明顯,重複接種PLDMV 12個星期後大部分品種(系)會產生主脈透化的現象,台大選系 ‘NTU08’ 與 ‘NTI10’ 的病徵較輕微, ‘台農2號’ 葉脈透化明顯,‘日陞’種則與接種SMN系統處理一樣全部死亡。各品種(系)接種SMN的葉片病徵明顯比接種PLDMV嚴重,顯示SMN系統的破壞力大於PLDMV,且接種SMN在莖上會形成明顯的水浸病斑,PLDMV則較輕微,本試驗顯示台大選系 ‘NTU04’與 ‘NTU08’ 的耐病性表現普遍較商業品種來的優良,而品種(系)接種SMN與PLDMV在各週的葉片病徵曲線發展面積具顯著相關,顯示品種(系)抗(耐)SMN的表現程度會同樣表現在抗(耐)PLDMV的反應上。
zh_TW
dc.description.abstractThe one-step RT-PCR assay with strain-specific primers was detected of various PRSV strains and PLDMV on different phyllotaxy. The PRSV signals in young leaves were stronger than olds, and the PLDMV couldn’t be detected 2 weeks after inoculated. The results of phyllotaxy detections revealed that the proper phyllotaxy for virus detected every week were the 7th phyllotaxy. The leaves symptoms on asynchronous inoculation assay were mild when inoculated with PLDMV, especially inoculated with PLDMV first. The slight symptoms inducing by PLDMV were similar to cross-protection and the best precaution on the asynchronous inoculation were the 0、4 weeks interval. Repeated inoculations with PRSV in 2sec and 4th week after inoculating with PLDMV at fist week would cause sever symptoms. Change the orders of inoculation would make the severity of symptoms different, especially the turns in DF and PLDMV, indicating the interference between DF and PLDMV were more than SMN and PLDMV. The result of distribution rate of water spots produce by different inoculated treatment were similar to leaves symptoms. The interference caused by PLDMV on relative growth rate of plant height and steam width was less when inoculated with PRSV. Detected by RT-PCR assay revealed that SMN and DF strain would interfere in each others replications at the early stage, but the two strains of PRSV and PLDMV could be detected definitely 8 weeks after first inoculated. The influence induced by PLDMV was not significant in simultaneous inoculation test, indicating that when PLDMV and PRSV simultaneous infected papaya, PRSV were more competitively than PLDMV. Papayas were infected DF strain in simultaneous inoculation in natural field, revealing that DF strain would be the predominant strain in the field of Taiwan. The results in this inoculation test also revealed that hybrid line‘NTU10’showed the high tolerance to PRSV-SMN、PRSV-DF and PLDMV, even complex infected by two virus, and‘TN2’is a susceptible cultivar to PRSV and PLDMV.
Papaya ringspot virus was divided into many strains, and severe mottling with
necrosis strain(SMN)was the most destructive strain in Taiwan. This experiment evaluated the tolerance of the tolerant papaya line which were bred by Department of Horticulture, NTU and commercial papaya cultivar after inoculated with SMN strain and PLDMV which may be the popular virus in Taiwan in the future. The leaves symptom of hybrid line ‘NTU04’ and ‘NTUB’ showed minor symptoms than ‘Sunrise’ 4 weeks after inoculated with SMN strain. In 12 weeks after inoculated with SMN strain, there were minor symptoms in ‘NTU04’ and ‘NTU11’, but ‘Sunrise’ cultivar was completely wilted. Unlike other cultivar or line, ‘TN2’ and ‘Sunrise’ showed severe symptom on leaves 4 weeks after inoculated with PLDMV. Hybrid line ‘NTU08’ and ‘NTU10’ still showed minor symptom, ‘TN2’ showed severe mosaic symptom on leaves and ‘Sunrise’ cultivar completely wilted 12 weeks after inoculated with PLDMV. Compared the symptoms of SMN strain with PLDMV, revealing that SMN was more destructive than PLDMV, and SMN strain would cause the steam spotted. There were the significant correlation in AUDPC(area under disease progress curve)of SMN strain and PLDMV, indicating that the plant’s tolerant reactions in SMN strain were similar to PLDMV.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:03:27Z (GMT). No. of bitstreams: 1
ntu-96-R93628107-1.pdf: 27849708 bytes, checksum: 2cbcbeec7c909f6cc1c44504db3ac9e6 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents緒言................................................................................................................................1
第一章:番木瓜以非同步與同步方式接種木瓜輪點病毒與木瓜畸葉嵌紋病毒之研
究
中文摘要........................................................................................................................4
前言................................................................................................................................5
前人研究........................................................................................................................7
材料與方法..................................................................................................................15
結果..............................................................................................................................22
討論..............................................................................................................................32
總結……......................................................................................................................44
英文摘要......................................................................................................................46
第二章:不同番木瓜品種(系)接種木瓜輪點病毒SMN系統與木瓜畸葉嵌紋病
毒的反應
中文摘要......................................................................................................................48
前言..............................................................................................................................49
材料與方法..................................................................................................................51
結果..............................................................................................................................52
討論..............................................................................................................................55
總結……......................................................................................................................57
英文摘要......................................................................................................................58
參考文獻....................................................................................................................133






圖表目次
圖1. 病毒系統之RT-PCR分子鑑別,三種專一性引子對,SMN467、DF703、PLDMV715。......................................................................................................59
圖2. 台農二號同時接種不同病毒組合於兩星期後以RT-PCR(SMN467)偵測圖,接種病毒處理為a. SMN、b. SMN+DF、c. SMN+PLDMV、d. SMN+DF+PLDMV。......................................................................................................60
圖3. NTU10選系同時接種不同病毒組合於兩星期後以RT-PCR(SMN467)偵測圖,接種病毒處理為a. SMN、b. SMN+DF、c. SMN+PLDMV、d. SMN+DF+PLDMV。.............................................................................................61
圖4. 台農二號同時接種不同病毒組合於兩星期後以RT-PCR(DF703)偵測圖,接種病毒處理為a. DF、b. SMN+DF、c. DF+PLDMV、d. SMN+DF+PLDMV。...........................................................................................................62
圖5. NTU10選系同時接種不同病毒組合於兩星期後以RT-PCR(DF703)偵測電泳圖,接種病毒處理為a. DF、b. SMN+DF、c. DF+PLDMV、d. SMN+DF+PLDMV。.................................................................................................63
圖6. 葉片病徵級數表。............................................................................................64
圖7. 網室內台大十號非同步接種(0、2星期)不同病毒處理八星期病徵圖。.........65
圖8. 網室內台農二號非同步接種(0、2星期)不同病毒處理八星期病徵圖。…….66
圖9. 網室內台大十號非同步接種(0、4星期)不同病毒處理八星期病徵圖。…….67
圖10. 網室內台農二號非同步接種(0、4星期)不同病毒處理八星期病徵圖。.......68
圖11. 網室內台大十號非同步接種(0、2、4星期)不同病毒處理八星期病徵圖。...69
圖12. 網室內台農二號非同步接種(0、2、4星期)不同病毒處理八星期病徵圖。...70
圖13. 網室內台農二號接種接種SMN、DF、PLDMV在莖上的水浸狀病徵表。.71
圖14. 網室內台農二號非同步接種(0、2星期)6週後莖上水浸狀病徵圖。……...72
圖15. 網室內台農二號非同步接種(0、4星期)六週後莖上水浸狀病徵圖。……...73
圖16. 網室內台農二號非同步接種(0、2、4星期)六週後莖上水浸狀病徵圖。…...74
圖17. 非同步接種網室試驗田區示意圖。…………………………………………75
圖18. 網室內非同步接種處理於0、2星期接種的葉片病徵發展曲線面積。…….76
圖19. 網室內非同步接種處理於0、4星期接種的葉片病徵發展曲線面積。…….77
圖20. 網室內非同步接種處理於0、2與4星期重複接種後的葉片病徵發展曲
線面積。……………………………………………………………………....78
圖21. 網室內非同步接種處理於0、2星期的莖上水浸病徵發展曲線面積。…….79
圖22. 網室內非同步接種處理於0、4星期的莖上水浸病徵發展曲線面積。…….80
圖23. 網室內非同步接種處理於0、2與4星期的莖上水浸病徵發展曲線面積。..81
圖24. 網室內非同步接種處理於0、2星期接種葉片螢光變量比值。…………….82
圖25. 網室內非同步接種處理於0、4星期接種葉片螢光變量比值。…………….83
圖26. 網室內非同步接種處理於0、2與4星期接種葉片螢光變量比值。………..84
圖27. 網室內台大選系十號同步接種不同病毒處理八星期後病徵表現。………85
圖28. 網室內台農二號同步接種不同病毒處理八星期後病徵表現。……………86
圖29. 網室外台大選系十號同步接種不同病毒處理八星期後病徵表現。………87
圖30. 網室外台農二號同步接種不同病毒處理八星期後病徵(整體)表現。……88
圖31. 網室內台農二號同步接種不同病毒處理四星期後莖上水浸病徵表現。…89
圖32. 網室內NTU10選係同步接種SMN+DF五週後以RT-PCR(DF703、
SMN467)偵測結果。………………………………………………………90
圖33. NTU10選系(上)、TN2(下)於網室外同步接種處理八個星期後以RT-PCR
(DF703)偵測(皆為第一重複結果)。……………………………………….91
圖34. 網室內同步接種試驗的葉片病徵發展曲線面積。…………………………92
圖35. 網室外同步接種處理的葉片病徵發展曲線面積。…………………………93
圖36. 網室內同步接種處理的莖部水浸病徵發展曲線面積。……………………94
圖37. 網室外同步接種處理的莖部水浸病徵發展曲線面積。…………………...95
圖38. 網室內同步接種後螢光變量比值變化。…………………………..……….96
圖39. 網室外同步接種後螢光變量比值變化。……………………………..……..97
圖40. 各品種(系)PLDMV與SMN病毒四星期與對照組比較。………..…...98
圖41. 各品種(系)接種SMN病毒四週後葉片病徵圖。………………………….99
圖42. 各品種(系)接種PLDMV病毒四週後葉片病徵圖。……………………...100
圖43. GMO木瓜接種PLDMV 6星期病徵圖。……………………………………101
圖44. 各品種(系)接種SMN 12星期後植株整體病徵表現。……………..……..102
圖45. 各品種(系)接種SMN 12星期後葉片病徵表現。………...……………….103
圖46. 各品種(系)接種PLDMV 12星期後植株整體病徵表現。……………..…104
圖47. 各品種(系)接種PLDMV 12星期後葉片病徵表現。…………...…………105
圖48. 各品種(系)接種SMN病毒4週後莖上水浸斑病徵圖。………………….106
圖49. 各品種(系)接種PLDMV病毒四週後莖上水浸斑病徵圖。…….……..…107
圖50. 各品種(系)比較試驗葉部病徵發展曲線面積圖。……………..……..108
圖51. 各品種(系)比較試驗莖部水浸斑比例病徵發展面積圖。…….………….109
圖52. 各品種(系)接種SMN與PLDMV由第2星期至第8星期的病徵曲線面
積相關圖。…………………………………………………………………..110
圖53. 各品種(系)接種SMN或PLDMV八星期後以RT-PCR偵測結果。………111
圖54. 紅妃品種接種SMN八週後以RT-PCR(SMN467)偵測。……...………….112
圖55. 紅妃品種接種PLDMV八週後以RT-PCR(PLDMV715)偵測。………..…113
表1. 網室內非同步接種處理(0、2星期)株高八星期相對生長率。…………..…114
表2. 網室內非同步接種處理(0、2星期)莖粗八星期相對生長率。…….....…….115
表3. 網室內非同步接種處理(0、2星期)節數絕對生長率。……………………..116
表4. 網室內非同步接種處理(0、4星期)株高八星期相對生長率。……………..117
表5. 網室內非同步接種處理(0、4星期)莖粗八星期相對生長率。……………..118
表6. 網室內非同步接種處理(0、4星期)節數絕對生長率。……………………..119
表7. 網室內非同步接種處理(0、2、4星期)株高八星期相對生長率。………..…120
表8. 網室內非同步接種處理(0、2、4星期)莖粗八星期相對生長率。…………..121
表9. 網室內非同步接種處理(0、2、4星期)節數絕對生長率。…………………..122
表10. 網室內台大選系NTU10非同步接種(0、2星期)不同病毒處理偵測圖。
………………………………………………………………………………123
表11. 網室內台農二號非同步接種(0、2星期)不同病毒處理偵測圖。…………124
表12. 網室內台大選系NTU10非同步接種(0、4星期)不同病毒處理偵測圖。
………………………………………………………………………………125
表13. 網室內台農二號非同步接種(0、4星期)不同病毒處理偵測圖。…………126
表14. 網室內台大選系NTU10非同步接種(0、2、4星期)不同病毒處理偵測
圖。……………………………………………………………….………….127
表15. 網室內台農二號非同步接種(0、2、4星期)不同病毒處理偵測圖。…….…128
表16. 網室內同步接種不同病毒處理株高八星期相對生長率。……….……….129
表17. 網室內同步接種不同病毒處理莖粗八星期相對生長率。…….………….130
表18. 網室內同步接種不同病毒處理節數絕對生長率。…………….………….131
表19. 網室外同步接種不同病毒處理株高八星期相對生長率。……….……….132
表20. 網室外同步接種不同病毒處理莖粗八星期相對生長率。…….………….133
表21. 網室內臺大選系NTU10同步接種不同病毒處理偵測圖。….……………134
表22. 網室內台農二號同步接種不同病毒處理偵測圖。……………….……….135
表23. 網室外台大選系NTU10同步接種不同病毒處理偵測圖。….……………136
表24. 網室外台農二號同步接種不同病毒處理偵測圖。…….………………….137
表25. 各品種(系)各星期植株數目(原每處理6株)。……………..………………138
dc.language.isozh-TW
dc.subject木瓜畸葉嵌紋病毒zh_TW
dc.subject木瓜輪點病毒zh_TW
dc.subjectPapaya-leaf distortion mosaic virusen
dc.subjectPapaya ringspot virusen
dc.title木瓜輪點病毒(SMN、DF系統)與木瓜畸葉嵌紋病毒在不同番木瓜品系上的交互作用zh_TW
dc.titleInteractions among Papaya ringspot virus(SMN and DF strains)and Papaya-leaf distortion mosaic virus in Different Papaya Lines(Carica papaya L.)en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor洪挺軒(Ting-Hsuan, Hung),林宗賢(Tzong-Shyan, Lin)
dc.contributor.oralexamcommittee#VALUE!
dc.subject.keyword木瓜輪點病毒,木瓜畸葉嵌紋病毒,zh_TW
dc.subject.keywordPapaya ringspot virus,Papaya-leaf distortion mosaic virus,en
dc.relation.page139
dc.rights.note有償授權
dc.date.accepted2007-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
27.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved