Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29247
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王錦堂
dc.contributor.authorYo-Ping Laien
dc.contributor.author賴祐平zh_TW
dc.date.accessioned2021-06-13T01:03:20Z-
dc.date.available2007-08-08
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citationAckland, M.L., Newgreen, D.F., Fridman, M., Waltham, M.C., Arvanitis, A., Minichiello, J., Price, J.T., and Thompson, E.W. (2003). Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab Invest 83, 435-448.
Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D., Doig, P.C., Smith, D.R., Noonan, B., Guild, B.C., deJonge, B.L., et al. (1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176-180.
Amieva, M.R., Vogelmann, R., Covacci, A., Tompkins, L.S., Nelson, W.J., and Falkow, S. (2003). Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430-1434.
Asahi, A., Kuwana, M., Suzuki, H., Hibi, T., Kawakami, Y., and Ikeda, Y. (2006). Effects of a Helicobacter pylori eradication regimen on anti-platelet autoantibody response in infected and uninfected patients with idiopathic thrombocytopenic purpura. Haematologica 91, 1436-1437.
Asahi, M., Azuma, T., Ito, S., Ito, Y., Suto, H., Nagai, Y., Tsubokawa, M., Tohyama, Y., Maeda, S., Omata, M., et al. (2000). Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191, 593-602.
Atherton, J.C., Cao, P., Peek, R.M., Jr., Tummuru, M.K., Blaser, M.J., and Cover, T.L. (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 270, 17771-17777.
Backert, S., Moese, S., Selbach, M., Brinkmann, V., and Meyer, T.F. (2001). Phosphorylation of tyrosine 972 of the Helicobacter pylori CagA protein is essential for induction of a scattering phenotype in gastric epithelial cells. Mol Microbiol 42, 631-644.
Bagnoli, F., Buti, L., Tompkins, L., Covacci, A., and Amieva, M.R. (2005). Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A 102, 16339-16344.
Birchmeier, C., Birchmeier, W., and Brand-Saberi, B. (1996). Epithelial-mesenchymal transitions in cancer progression. Acta Anat (Basel) 156, 217-226.
Blaser, M.J. (1992). Hypotheses on the pathogenesis and natural history of Helicobacter pylori-induced inflammation. Gastroenterology 102, 720-727.
Blaser, M.J., Perez-Perez, G.I., Kleanthous, H., Cover, T.L., Peek, R.M., Chyou, P.H., Stemmermann, G.N., and Nomura, A. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55, 2111-2115.
Boren, T., Falk, P., Roth, K.A., Larson, G., and Normark, S. (1993). Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892-1895.
Censini, S., Lange, C., Xiang, Z., Crabtree, J.E., Ghiara, P., Borodovsky, M., Rappuoli, R., and Covacci, A. (1996). cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93, 14648-14653.
Ching, C.K., Wong, B.C., Kwok, E., Ong, L., Covacci, A., and Lam, S.K. (1996). Prevalence of CagA-bearing Helicobacter pylori strains detected by the anti-CagA assay in patients with peptic ulcer disease and in controls. Am J Gastroenterol 91, 949-953.
Clyne, M., and Drumm, B. (2004). Helicobacter pylori infection of human and murine primary gastric cells. Infect Immun 72, 5464-5469.
Covacci, A., Censini, S., Bugnoli, M., Petracca, R., Burroni, D., Macchia, G., Massone, A., Papini, E., Xiang, Z., Figura, N., and et al. (1993). Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A 90, 5791-5795.
Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J., and Rappuoli, R. (1999). Helicobacter pylori virulence and genetic geography. Science 284, 1328-1333.
Crabtree, J.E., Wyatt, J. I., Perry, S., et al. (1996). CagA seropositive Helicobacter pylori infected non-ulcer patients have increased frequency of intestinal metaplasia. Gastroenterology 110, A85.
Craig, P.M., Territo, M.C., Karnes, W.E., and Walsh, J.H. (1992). Helicobacter pylori secretes a chemotactic factor for monocytes and neutrophils. Gut 33, 1020-1023.
Donahue, J.P., Israel, D.A., Torres, V.J., Necheva, A.S., and Miller, G.G. (2002). Inactivation of a Helicobacter pylori DNA methyltransferase alters dnaK operon expression following host-cell adherence. FEMS Microbiol Lett 208, 295-301.
Dunn, B.E., Campbell, G.P., Perez-Perez, G.I., and Blaser, M.J. (1990). Purification and characterization of urease from Helicobacter pylori. J Biol Chem 265, 9464-9469.
Eaton, K.A., Suerbaum, S., Josenhans, C., and Krakowka, S. (1996). Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64, 2445-2448.
Evans, D.J., Jr., and Evans, D.G. (2001). Helicobacter pylori CagA: analysis of sequence diversity in relation to phosphorylation motifs and implications for the role of CagA as a virulence factor. Helicobacter 6, 187-198.
Evans, D.J., Jr., Evans, D.G., Takemura, T., Nakano, H., Lampert, H.C., Graham, D.Y., Granger, D.N., and Kvietys, P.R. (1995). Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63, 2213-2220.
Evans, D.J., Jr., Queiroz, D.M., Mendes, E.N., and Evans, D.G. (1998). Diversity in the variable region of Helicobacter pylori cagA gene involves more than simple repetition of a 102-nucleotide sequence. Biochem Biophys Res Commun 245, 780-784.
Falk, P., Roth, K.A., Boren, T., Westblom, T.U., Gordon, J.I., and Normark, S. (1993). An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the human gastric epithelium. Proc Natl Acad Sci U S A 90, 2035-2039.
Fan, X.G., Chua, A., Fan, X.J., and Keeling, P.W. (1995). Increased gastric production of interleukin-8 and tumour necrosis factor in patients with Helicobacter pylori infection. J Clin Pathol 48, 133-136.
Farinati, F., Cardin, R., Russo, V.M., Busatto, G., Franco, M., and Rugge, M. (2003). Helicobacter pylori CagA status, mucosal oxidative damage and gastritis phenotype: a potential pathway to cancer? Helicobacter 8, 227-234.
Fischer, W., Puls, J., Buhrdorf, R., Gebert, B., Odenbreit, S., and Haas, R. (2001). Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol 42, 1337-1348.
Frenck, R.W., Jr., and Clemens, J. (2003). Helicobacter in the developing world. Microbes Infect 5, 705-713.
Gasbarrini, A., Franceschi, F., Tartaglione, R., Landolfi, R., Pola, P., and Gasbarrini, G. (1998). Regression of autoimmune thrombocytopenia after eradication of Helicobacter pylori. Lancet 352, 878.
Goodwin, C.S., Armstrong, J.A., and Marshall, B.J. (1986). Campylobacter pyloridis, gastritis, and peptic ulceration. J Clin Pathol 39, 353-365.
Graham, D.Y., Malaty, H.M., Evans, D.G., Evans, D.J., Jr., Klein, P.D., and Adam, E. (1991). Epidemiology of Helicobacter pylori in an asymptomatic population in the United States. Effect of age, race, and socioeconomic status. Gastroenterology 100, 1495-1501.
Halliwell, B., and Aruoma, O.I. (1991). DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Letters 281, 9-19.
Hatakeyama, M. (2003). Helicobacter pylori CagA--a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect 5, 143-150.
Hatakeyama, M. (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature reviews 4, 688-694.
Heuermann, D., and Haas, R. (1998). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519-528.
Higashi, H., Tsutsumi, R., Fujita, A., Yamazaki, S., Asaka, M., Azuma, T., and Hatakeyama, M. (2002a). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proceedings of the National Academy of Sciences of the United States of America 99, 14428-14433.
Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., and Hatakeyama, M. (2002b). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683-686.
Honda, S., Fujioka, T., Tokieda, M., Satoh, R., Nishizono, A., and Nasu, M. (1998). Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res 58, 4255-4259.
Hsieh, P.F., Yang, J.C., Lin, J.T., and Wang, J.T. (1998). Molecular mechanisms of clarithromycin resistance in Helicobacter pylori. J Formos Med Assoc 97, 445-452.
Huang, J., O'Toole, P.W., Doig, P., and Trust, T.J. (1995). Stimulation of interleukin-8 production in epithelial cell lines by Helicobacter pylori. Infect Immun 63, 1732-1738.
Humans., I.A.f.R.o.C.M.o.t.E.o.C.R.t. (1994). Infection with Helicobacter pylori, Vol 61.
Ilver, D., Arnqvist, A., Ogren, J., Frick, I.M., Kersulyte, D., Incecik, E.T., Berg, D.E., Covacci, A., Engstrand, L., and Boren, T. (1998). Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373-377.
Israel, D.A., and Peek, R.M., Jr. (2006). The role of persistence in Helicobacter pylori pathogenesis. Curr Opin Gastroenterol 22, 3-7.
Ito, Y., Azuma, T., Ito, S., Miyaji, H., Hirai, M., Yamazaki, Y., Sato, F., Kato, T., Kohli, Y., and Kuriyama, M. (1997). Analysis and typing of the vacA gene from cagA-positive strains of Helicobacter pylori isolated in Japan. J Clin Microbiol 35, 1710-1714.
Kenny, B., DeVinney, R., Stein, M., Reinscheid, D.J., Frey, E.A., and Finlay, B.B. (1997). Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511-520.
Kodama, A., Matozaki, T., Shinohara, M., Fukuhara, A., Tachibana, K., Ichihashi, M., Nakanishi, H., and Takai, Y. (2001). Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 6, 869-876.
Kuipers, E.J., Perez-Perez, G.I., Meuwissen, S.G., and Blaser, M.J. (1995). Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 87, 1777-1780.
Labigne, A. (1997). Helicobacter pylori protocols. In: Clayton, C. L., & Mobley, H. L. T. Random Mutagenesis of H. pylori Genome, Toyowa, N. J., USA: Humana Press 153-163.
Labigne, A., Courcoux, P., and Tompkins, L. (1992). Cloning of Campylobacter jejuni genes required for leucine biosynthesis, and construction of leu-negative mutant of C. jejuni by shuttle transposon mutagenesis. Res Microbiol 143, 15-26.
Lai, Y.P., Yang, J.C., Lin, T.Z., Wang, J.T., and Lin, J.T. (2003). CagA tyrosine phosphorylation in gastric epithelial cells caused by Helicobacter pylori in patients with gastric adenocarcinoma. Helicobacter 8, 235-243.
Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F.O., Forsberg, L., Roche, N., Angstrom, J., Larsson, T., Teneberg, S., Karlsson, K.A., et al. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573-578.
Mai, U.E., Perez-Perez, G.I., Allen, J.B., Wahl, S.M., Blaser, M.J., and Smith, P.D. (1992). Surface proteins from Helicobacter pylori exhibit chemotactic activity for human leukocytes and are present in gastric mucosa. J Exp Med 175, 517-525.
Marshall, B.J., Barrett, L.J., Prakash, C., McCallum, R.W., and Guerrant, R.L. (1990). Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 99, 697-702.
Marshall, B.J., Warren JR (1983). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273-1275.
Marshall, B.J., and Warren, J.R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
Murata-Kamiya, N., Kurashima, Y., Teishikata, Y., Yamahashi, Y., Saito, Y., Higashi, H., Aburatani, H., Akiyama, T., Peek, R.M., Jr., Azuma, T., and Hatakeyama, M. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26, 4617-4626.
Necchi, V., Candusso, M.E., Tava, F., Luinetti, O., Ventura, U., Fiocca, R., Ricci, V., and Solcia, E. (2007). Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 132, 1009-1023.
Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000). Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497-1500.
Papini, E., Satin, B., Norais, N., de Bernard, M., Telford, J.L., Rappuoli, R., and Montecucco, C. (1998). Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 102, 813-820.
Parsonnet, J., Friedman, G.D., Vandersteen, D.P., Chang, Y., Vogelman, J.H., Orentreich, N., and Sibley, R.K. (1991). Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325, 1127-1131.
Parsonnet, J., Hansen, S., Rodriguez, L., Gelb, A.B., Warnke, R.A., Jellum, E., Orentreich, N., Vogelman, J.H., and Friedman, G.D. (1994). Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330, 1267-1271.
Pasceri, V., Patti, G., Cammarota, G., Pristipino, C., Richichi, G., and Di Sciascio, G. (2006). Virulent strains of Helicobacter pylori and vascular diseases: a meta-analysis. American Heart Journal 151, 1215-1222.
Peek, R.M., Jr., Moss, S.F., Tham, K.T., Perez-Perez, G.I., Wang, S., Miller, G.G., Atherton, J.C., Holt, P.R., and Blaser, M.J. (1997). Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J Natl Cancer Inst 89, 863-868.
Poppe, M., Feller, S.M., Romer, G., and Wessler, S. (2007). Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26, 3462-3472.
Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., Lu, H., Ohnishi, N., Azuma, T., Suzuki, A., et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330-333.
Satin, B., Del Giudice, G., Della Bianca, V., Dusi, S., Laudanna, C., Tonello, F., Kelleher, D., Rappuoli, R., Montecucco, C., and Rossi, F. (2000). The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med 191, 1467-1476.
Schaeper, U., Gehring, N.H., Fuchs, K.P., Sachs, M., Kempkes, B., and Birchmeier, W. (2000). Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149, 1419-1432.
Schmitt, W., and Haas, R. (1994). Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol 12, 307-319.
Segal, E.D., Cha, J., Lo, J., Falkow, S., and Tompkins, L.S. (1999). Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96, 14559-14564.
Segal, E.D., Lange, C., Covacci, A., Tompkins, L.S., and Falkow, S. (1997). Induction of host signal transduction pathways by Helicobacter pylori. Proc Natl Acad Sci U S A 94, 7595-7599.
Selbach, M., Moese, S., Hauck, C.R., Meyer, T.F., and Backert, S. (2002). Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775-6778.
Shimoyama, T., Fukuda, S., Tanaka, M., Mikami, T., Saito, Y., and Munakata, A. (1997). High prevalence of the CagA-positive Helicobacter pylori strains in Japanese asymptomatic patients and gastric cancer patients. Scand J Gastroenterol 32, 465-468.
Smoot, D.T., Sewchand, J., Young, K., Desbordes, B.C., Allen, C.R., and Naab, T. (2000). A method for establishing primary cultures of human gastric epithelial cells. Methods Cell Sci 22, 133-136.
Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J., and Covacci, A. (2002). c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol Microbiol 43, 971-980.
Stein, M., Rappuoli, R., and Covacci, A. (2000). Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 97, 1263-1268.
Su, B., Johansson, S., Fallman, M., Patarroyo, M., Granstrom, M., and Normark, S. (1999). Signal transduction-mediated adherence and entry of Helicobacter pylori into cultured cells. Gastroenterology 117, 595-604.
Suerbaum, S., and Michetti, P. (2002). Helicobacter pylori infection. N Engl J Med 347, 1175-1186.
Suzuki, H., Hibi, T., and Marshall, B.J. (2007). Helicobacter pylori: present status and future prospects in Japan. Journal of gastroenterology 42, 1-15.
Suzuki, H., Miyazawa, M., Nagahashi, S., Mori, M., Seto, K., Kai, A., Suzuki, M., Miura, S., and Ishii, H. (2002). Attenuated apoptosis in H. pylori-colonized gastric mucosa of Mongolian gerbils in comparison with mice. Digestive diseases and sciences 47, 90-99.
Tammer, I., Brandt, S., Hartig, R., Konig, W., and Backert, S. (2007). Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology 132, 1309-1319.
Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., et al. (1997). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547.
Tummuru, M.K., Cover, T.L., and Blaser, M.J. (1993). Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun 61, 1799-1809.
Wang, Y., Roos, K.P., and Taylor, D.E. (1993). Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J Gen Microbiol 139, 2485-2493.
Watanabe, T., Tada, M., Nagai, H., Sasaki, S., and Nakao, M. (1998). Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 115, 642-648.
Weel, J.F., van der Hulst, R.W., Gerrits, Y., Roorda, P., Feller, M., Dankert, J., Tytgat, G.N., and van der Ende, A. (1996). The interrelationship between cytotoxin-associated gene A, vacuolating cytotoxin, and Helicobacter pylori-related diseases. J Infect Dis 173, 1171-1175.
Wotherspoon, A.C., Doglioni, C., Diss, T.C., Pan, L., Moschini, A., de Boni, M., and Isaacson, P.G. (1993). Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575-577.
Yamaoka, Y., Kodama, T., Kashima, K., Graham, D.Y., and Sepulveda, A.R. (1998). Variants of the 3' region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol 36, 2258-2263.
Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
Yang, J.C., Wang, T.H., Wang, H.J., Kuo, C.H., Wang, J.T., and Wang, W.C. (1997). Genetic analysis of the cytotoxin-associated gene and the vacuolating toxin gene in Helicobacter pylori strains isolated from Taiwanese patients. Am J Gastroenterol 92, 1316-1321.
Zhang, Y., Argent, R.H., Letley, D.P., Thomas, R.J., and Atherton, J.C. (2005). Tyrosine phosphorylation of CagA from Chinese Helicobacter pylori isolates in AGS gastric epithelial cells. Journal of clinical microbiology 43, 786-790.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/29247-
dc.description.abstract雖然世界衛生組織基於流行病學的研究成果,認為幽門螺旋桿菌與人類胃部惡性腫瘤生成有關,特別是與人類胃腺癌形成有著相當密切的關係,已經將幽門螺旋桿菌列為第一類人類致癌因子,但是確實的致病機轉仍尚未被清楚的分析瞭解。由於幽門螺旋桿菌CagA蛋白可以被轉位進入胃上皮細胞,並且在酪氨酸磷酸化模體發生磷酸化,這現象被認為與致癌機轉有關。
所以我們研究CagA酪氨酸磷酸化、酪氨酸磷酸化模體變異性是否與增加致癌風險有關,另外我們建立初次培養人類胃上皮細胞感染幽門螺旋桿菌的模式,希望能比胃癌上皮細胞或非胃上皮細胞的模式,提供更接近人類活體感染的研究方式。
我們研究發現由胃腺癌病人的胃中所分離培養得來的幽門螺旋桿菌菌株發生CagA蛋白酪氨酸磷酸化的比例,比起自一般性胃炎病人的胃中分離得到的菌株,顯著要高了許多(27/29:15/29)。而CagA酪氨酸磷酸化模體變異性與CagA蛋白酪氨酸磷酸化並非絕對相關。所以發生CagA蛋白酪氨酸磷酸化現象與增加致癌風險有關,或者是功能完整的第四型分泌系統與致癌機轉有關。我們也建立初次培養人類胃上皮細胞感染幽門螺旋桿菌的模式,並且發現CagA蛋白酪氨酸磷酸化產生,與細胞形態變化有關;也發現CagA蛋白轉位至胃上皮細胞可以造成細胞緊密接合的破壞。
經由研究顯示能夠被轉位進入胃上皮細胞,並且被磷酸化的CagA蛋白會增加致癌風險,另外由CagA轉位造成細胞緊密接合的破壞而產生的可能致癌機轉,以初次培養上皮細胞的模式來看,是極有可能發生人類活體中。本研究提供對CagA轉位及被磷酸化的致癌機轉更進一步的瞭解。
zh_TW
dc.description.abstractBackground
Tyrosine phosphorylation of Helicobacter pylori cytotoxin-associated protein (CagA) of in gastric epithelial cells is reported. Phosphorylated CagA trigger downstream cellular signaling that alters cell morphology and proliferation and induce pro-inflammatory process. Translocated CagA involves epithelial-to-mesenchymal transition and disruption of cellular apical-junction complex in MDCK cells. These events may play important role in the development of malignancy. To clarify these issues, our aims in this study are: 1) to examine the occurrence of CagA tyrosine phosphorylation in H. pylori strains isolated from differnet patients with gastric adenocarcinoma and gastritis, 2) to analyze the relationship between the diversity of tyrosine phosphorylation motifs and the presence of CagA tyrosine phosphorylation, 3) to establish primary human gastric epithelial cell for better understanding effects of CagA protein in non-cancer epithelial cells and 4) to observe cellular junction change in primary human gastric epithelial cell but not non-gastric epithelial cells .
Methods
Fifty-eight clinical isolates of H. pylori from patients with gastric adenocarcinoma (29 cases) and gastritis (29 cases) were studied for CagA tyrosine phosphorylation by Western blotting. Sequence diversity of tyrosine phosphorylation motifs was analysed among positive- or negative-CagA tyrosine phosphorylation isolates. To elucidate whether events of CagA translocation and phosphorylation take place in normal human gastric epithelium, we infected human primary gastric epithelial cells with H. pylori. Tight junction proteins: ZO-1 and occludin changes were observed by confocal microscopy.
Results
Positive CagA tyrosine phosphorylation was found in 93.1% (27 of 29) of strains from gastric adenocarcinoma patients and 51.7% (15 of 29) of strains from gastritis patients, (p<0.001). Intact motifs were found in H. pylori isolates with CagA tyrosine phosphorylation. Of the 16 negative CagA tyrosine phosphorylation isolates, intact tyrosine phosphorylation motifs were found in 15 isolates. Our results also demonstrate that CagA protein was translocated into primary gastric epithelial cells and tyrosine phosphorylated. The translocated CagA induces cytoskeleton rearrangement and the disruption of tight junctions in primary gastric epithelial cells.
Conclusions
CagA tyrosine phosphorylation, which is significantly greater in strains from gastric adenocarcinoma patients, may play a role in gastric carcinogenesis, and could be a better marker of more virulent strains than the cag pathogenicity island in Asia, where the cag pathogenicity island is present in nearly all H. pylori strains. Sequence diversity of tyrosine phosphorylation motifs on CagA was not related to the presence of tyrosine phosphorylation. The absence of tyrosine phosphorylation motif might result in negative tyrosine phosphorylation phenotypes, but such motifs are not the sole factors associated with CagA tyrosine phosphorylation. The establishment of primary culture gastric epithelial cells also provides direct evidence of the modulation of gastric epithelial cells by CagA translocation, and advances our understanding of the carcinogenesis of H. pylori infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T01:03:20Z (GMT). No. of bitstreams: 1
ntu-96-D88421007-1.pdf: 3288448 bytes, checksum: 7d92b5b467d8f1bbfce37b30d4f74eee (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 緒論 ……………………………………………… 1

(1.1) 幽門螺旋桿菌感染與人類上消化道疾病 …………… 2
(1.2) 幽門螺旋桿菌的致病因子 …………………………… 3
(1.2.1) 鞭毛(flagella) …………………………… 4
(1.2.2) 尿素酶(urease) …………………………… 4
(1.2.3) 黏著因子(adhesin) ……………………… 5
(1.2.4) 發炎反應因子與細胞毒素………………… 5
(1.2.5) 第四型分泌系統(Type IV secretion system) …………………………………… 6
(1.3) 幽門螺旋桿菌CagA蛋白及第四型分泌系統與致病機轉………………………………………………………… 6
(1.3.1) cagA基因在臨床疾病上的重要性 ………… 7
(1.3.2) CagA蛋白磷酸化對胃上皮細胞的影響 …… 7
(1.3.3) 幽門螺旋桿菌第四型分泌系統對胃上皮細胞的影響…………………………………… 8
(1.3.4) CagA蛋白的酪氨酸磷酸化 ………………… 8
(1.3.5) CagA蛋白的酪氨酸磷酸化模體 …………… 9
(1.3.6) CagA蛋白的轉位與上皮細胞緊密間隙變化 9
(1.4) 幽門螺旋桿菌感染與胃癌形成的相關機制…………… 10
(1.4.1) 自由基(Free radicals)的影響 ………… 10
(1.4.2) 細胞凋亡(Apoptosis)與細胞增生(proliferation)的影響……………………… 11
(1.4.3) 細胞分化及小腸化生(Intestinal metaplasia) 11
(1.5) 本研究的目標及重要性………………………………… 12
(1.6) 本研究的可能結果……………………………………… 13

第二章 材料與方法 …………………………………………… 15

(2.1) 材料菌株 ………………………………………………… 16
(2.1.1) 菌株:幽門螺旋桿菌 16
(2.1.2) 菌株:大腸桿菌 17
(2.1.3) 細胞株 18
(2.1.4) 質體 19
(2.1.5) 培養基 20
(2.1.6) 引子 21
(2.1.7) 抗體 23
(2.2) 幽門螺旋桿菌cagE與cagA基因的剔除(knock out) 25
(2.3) 幽門螺旋桿菌cagA基因的補回(complementation)… 27
(2.4) 酪氨酸磷酸化模體DNA定序…………………………… 28
(2.5) 人類胃上皮細胞之培養………………………………… 29
(2.6) 細胞株培養……………………………………………… 30
(2.7) 初次培養人類胃上皮細胞之確認……………………… 31
(2.8) 以幽門螺旋桿菌感染胃上皮細胞……………………… 32
(2.9) 共軛焦顯微鏡及免疫螢光染色(immunofluorescence) 33
(2.10) 免疫(西方)墨點法檢測……………………………… 34
(2.11) 資料統計分…………………………………………… 35

第三章 結果 …………………………………………………… 36

(3.1) 幽門螺旋桿菌cagA及cagE基因剔除………………… 37
(3.2) 檢測CagA蛋白及酪氨酸磷酸化CagA蛋白 …………… 38
(3.3) 研究個體的特性分析與CagA蛋白酪氨酸磷酸化…… 40
(3.4) 分析酪氨酸磷酸化模體之基因序列變異……………… 43
(3.5) 建立初次培養的人類為上皮細胞……………………… 45
(3.6) 初次培養人類胃上皮細胞感染幽門螺旋桿菌,CagA轉位與磷酸化……………………………………………… 46
(3.7) 幽門螺旋桿菌感染後初次培養人類胃上皮細胞的型態變化……………………………………………………… 47
(3.8) 幽門螺旋桿菌CagA引發初次培養胃上皮細胞緊密間隙破壞 ………………………………………………… 48
(3.9) 幽門螺旋桿菌cagA基因補回(complementation)的影響 …………………………………………………… 49

第四章 討論 …………………………………………………… 50

(4.1) 幽門螺旋桿菌CagA蛋白酪氨酸磷酸化與病人年齡… 51
(4.2) 幽門螺旋桿菌CagA蛋白酪氨酸磷酸化與cag-PAI的
相似意義………………………………………………… 52
(4.2.1) CagA蛋白酪氨酸磷酸化與TPMs變異 52
(4.2.2) CagA蛋白TPMs變異與疾病生成的關係 53
(4.2.3) CagA蛋白的酪氨酸磷酸化與蛋白轉位 54
(4.3) 胃上皮細胞培養與幽門螺旋桿菌致病機制…………… 56
(4.4) CagA蛋白轉位進入初次培養的胃上皮細胞………… 57
(4.5) CagA蛋白轉位進入初次培養的胃上皮細胞與緊密接合損壞 ………………………………………………… 58
(4.6) 胃癌細胞株與初次培養的胃上皮細胞的差異………… 60

英文總結 ………………………………………………………… 61
參考文獻 ………………………………………………………… 64
圖表 ……………………………………………………………… 78
附錄 ……………………………………………………………… 101
dc.language.isozh-TW
dc.titleCagA 轉位及胃上皮細胞緊密接合的損壞:幽門螺旋桿菌可能之致癌機轉zh_TW
dc.titleCagA Translocation and Gastric Epithelial Tight Junction Destruction: Possible Carcinogenesis of Helicobacter pyloren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.coadvisor林肇堂
dc.contributor.oralexamcommittee賴明陽,吳建春,吳俊忠,王雯靜
dc.subject.keyword幽門螺旋桿菌,CagA蛋白轉位,細胞緊密接合,zh_TW
dc.subject.keywordHelicobacter pylori,CagA protein translocation,Cell tight junction,en
dc.relation.page103
dc.rights.note有償授權
dc.date.accepted2007-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
3.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved